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Critical Reasoning 25 ï Introduction to 

Many-Valued Logics  

After Fronhöfer (2011) 

A many-valued logic is a propositional calculus in which 

there are more than two truth-values. Up till now we have 

tacitly accepted the principle of bivalence which states that 

every sentence expressing a proposition has exactly one 

truth value, either true or false. Logics that satisfy this 

principle are called two-valued or bivalent. Not to be 

confused with the principle of bivalence, the related law of 

the excluded middle states that either a proposition is true 

or its negation is true. ¢ƘŜǊŜ Ŏŀƴ ōŜ ƴƻ ǘƘƛǊŘ ƻǊ άƳƛŘŘƭŜέ 

waȅΤ ƘŜƴŎŜ ǘƘŜ ƴŀƳŜ άŜȄŎƭǳŘŜŘ ƳƛŘŘƭŜέΦ This was stated by 

Russell and Whitehead in their Principia Mathematica as, 

the now familiar, 

Ṳὴ Ö ͯὴ 

Aristotle was the first to formulate this in his discussion of the principle of non-contradiction which 

states that contradictory statements cannot both be true at the same time. This was also stated by 

Russell and Whitehead in their Principia Mathematica as 

ṲͯὴɆͯ ὴ 

Ironically, Aristotle was also the first to question the law of the excluded middle, especially as it 

relates to future events. Suppose two teams, Red and Blue, are to play a match next Saturday, then 

ǘƘŜ ǎǘŀǘŜƳŜƴǘ ά¢ƘŜ wŜŘǎ ǿƛƭƭ ōŜŀǘ ǘƘŜ .ƭǳŜǎέ ƛǎ ǎǘǊƛŎǘƭȅ ƴŜƛǘƘŜǊ ǘǊǳŜ ƴƻǊ ŦŀƭǎŜ at present, since the 

event has not yet happened. It is as if the truth-value of the statement is somehow in limbo until 

after the event.  We have also seen self-referential statements such as the ƭƛŀǊΩǎ ǇŀǊŀŘƻȄ, 

 This statement is false. 

Lǎ ƛǘ ǘǊǳŜΚ ²Ŝƭƭ ƛǘ ƛǎ ǘǊǳŜ ƛŦ ƛǘ ƛǎƴΩǘ ŀƴŘ ƛǘ ƛǎ ƴƻǘ ǘǊǳŜ ƛŦ ƛǘ ƛǎΦ Another is the so called barber paradox 

derived from Russell's paradox. (See Critical Reasoning 18.) 

There is a lone village barber who shaves all men in the village who do not shave themselves. 

Does he shave himself? 

Again this question cannot be answered without contradiction. Either he shaves himself, in which 

case he does not shave himself or he does not shave himself, in which case he does. Whether the 

paradox can be resolved has received much attention, not least by Russell himself in his The 

Philosophy of Logical Atomism. There are also statements that may or may not be true but that could 

never be known, not even in principle, such as 

 There are other universes besides ours. 
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According to some logicians, especially since the early 20th Century, there is therefore a need for a 

system of logic that takes account of, at least, ŀ ǘƘƛǊŘ άǇƻǎǎƛōƭŜέ ƻǊ άǳƴƪƴƻǿƴέ truth value that is 

ƴŜƛǘƘŜǊ ǘǊǳŜ ƴƻǊ ŦŀƭǎŜΦ ¢ƘŜǎŜ ǊŜǇǊŜǎŜƴǘ ǎƻ ŎŀƭƭŜŘ άǘƘǊŜŜ-ǾŀƭǳŜέ ǎȅǎǘŜƳǎ όe.g. those of _ǳƪŀǎƛŜǿƛŎȊ and 

Kleene) but there are other logics of more than three truth- values and beyond including, so called, 

fuzzy logic which has infinitely many. 

We were unable to find a suitable book chapter or journal article as a guide for this study unit ς most 

are either too technical or too fragmentary - however lecture notes prepared by Bertram Fronhöfer 

of Dresden Technical University: Introduction to Many-Valued Logics (2011) do provide the 

necessary detail while remaining accessible. The rest of this study unit is therefore based on these 

ƴƻǘŜǎ ǿƘƛŎƘ ǿŜ ƘŀǾŜ ƘŀǊƳƻƴƛǎŜŘ ǿƛǘƘ /ƻǇƛΩǎ ƴƻǘŀǘƛƻƴΦ Fronhöfer takes a broadly historical approach 

to many valued logics but ōŜƎƛƴǎ ǿƛǘƘ ŀ ŘƛŀƎǊŀƳ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ άƭŀƴŘǎŎŀǇŜέ ƻŦ Ƴŀƴȅ ǾŀƭǳŜŘ-logics. 

Many Valued-Logics 

 

  truth-functional    not truth-functional  

              Ź      | 

             3      | 

             Ź      | 

             4      | 

             Ź      | 

             ể      | 

            Њ      | 

            Ź     possibilistic logic 

      fuzzy logic     probabilistic logic 

¢ƘŜ ǘŜǊƳ άaŀƴȅ-±ŀƭǳŜŘ [ƻƎƛŎǎέ ǳǎǳŀƭƭȅ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ƭŜŦǘ-hand branch of the diagram where the 

numerals represent the number of truth-values. (p. 2) Before setting out a schema for three-valued 

logic, Fronhöfer first defines the syntax and semantics of classical (two-valued) logic according to 

conventions that will be used later. Note his approach is quite different to that of Copi and should 

therefore be followed from the get go. Thus, 

 

Propositional Alphabet and Formulae 

Defn. 1.1 An alphabet of propositional logic consists of 

¶ a set ὴȠ ὴȠ ὴȣ  of propositional variables 

¶ the set of standard connectives ͯ ρȠ ɆςȠÖ ςȠ ṓ ςȠ ḳ ς  together with their 

arities or number of arguments or operands that the function takes (in parentheses) 

https://web.archive.org/web/20131225052706/http:/www.wv.inf.tu-dresden.de/Teaching/SS-2011/mvl/mval.HANDOUT2.pdf
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¶ ¢ƘŜ ǎǇŜŎƛŀƭ ŎƘŀǊŀŎǘŜǊǎ άόά ŀƴŘ άύέ 

Defn. 1.2 The set of propositional formulae is the smallest set CL with the following properties: 

¶ If F ɴ then F ɴ ,ד   CL (so called atomic formulae) 

¶ If ρ is a unary connective and F ɴ  CL, then  F ɴ  CL. 

¶ If ς is a binary connective and F, G ɴ  CL, then F  G  ɴ  CL. 

Usually we drop the outer pair of parentheses. (p. 6) 

 

Classical (Two-Valued) Semantics 

Defn. 1.3 We denote the (classical) truth-vales by the set ר 4Ƞ& 

 For each connective ὲ we define a truth function ᶻȡ ר ר  

Defn. 1.4 A classical (propositional) interpretation ) ר Ƞ Ȣ  consists of the set ר 4Ƞ& of                

truth values and a mapping  Ȣ : CL O ר  with: 

 &

ᶻἑ  ÉÆ ἐ ÉÓ ÏÆ ÔÈÅ ÆÏÒÍ ἑ
 
ἑ ἓ ᶻἑ ἓ ÉÆ ἐ ÉÓ ÏÆ ÔÈÅ ÆÏÒÍ ἑ  ἑ

    (p. 6) 

      

Rem 1.5  An interpretation ) ר Ƞ Ȣ  is uniquely defined by specifying how Ȣ acts on 

propositional variables. We call this restriction of an interpretation to ד a valuation or a 

truth -value assignment. In other words: 

¶ A valuation uniquely determines an interpretation. 

¶ Moreover, every valuation can be uniquely extended to an interpretation. 

 We often represent an interpretation ) ר Ƞ Ȣ  by the set Ἃᶰד Ἃἓ 4 

 Sometimes we write ἐἓ instead of ἐἓ. 

 ²ƛǘƘ ŀǎǎƻŎƛŀǘƛǾŜ ŎƻƴƴŜŎǘƛǾŜǎ ǿŜ ǎƻƳŜǘƛƳŜǎ ΨǊŜŘǳŎŜΩ ǘƘŜ ǇŀƛǊǎ ƻŦ ǇŀǊŜƴǘƘŜǎŜǎΦ (p. 8) 

 

Classical (Two-Valued) Truth Functions 

Defn. 1.6 For ὺȟύᶰר  the truth functions ͯ ᶻ; Ɇᶻ; Öᶻ;ṓᶻ and ḳᶻ are defined by their truth tables as 

in Critical Reasoning 05, only using ὺȟύ instead of A and B or p and q.  (p. 8) 

       ͯ ᶻὺ               ὺɆᶻύ                 ὺ Öᶻύ 

ὺ ͯᶻὺ  ὺ͵ύ T F  ὺ͵ύ T F 
T F  T T F  T T T 
F T  F F F  F T F 
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           ὺṓᶻύ             ὺḳᶻύ 

ὺ͵ύ T F  ὺ͵ύ T F 
T T F  T T F 
F T T  F F T 

 

Defn. 1.7 Let F ɴ  CL then, 

¶ F is called satisfiable iff there is an interpretation  ) ר Ƞ Ȣ |ἐἓ 4 

¶ F is called valid or tautologous iff for all interpretations ) ר Ƞ Ȣ |ἐἓ 4 

¶ F is called falsifiable or refutable iff there is an interpretation  ) ר Ƞ Ȣ |ἐἓ & 

¶ F is called unsatisfiable iff for all interpretations ) ר Ƞ Ȣ |ἐἓ &              (p. 10) 

E.g. 1.8 In this example Fronhöfer demonstrates the truth-table method for working out the 

combination of truth values under the connective with the widest scope of a complex 

formula. We have already mastered this skill in Critical Reasoning 05 however you may 

want to refresh your memory by constructing a truth-table for the formula in is example, 

i.e. ͯ ὖɆὗ Ö Ὑ with ὖ, ὗ and Ὑ in ד. The solution is on p. 10 of the notes. 

 

Primitive Connectives 

Defn. 1.9 We may take ͯ  ŀƴŘ ω ŀǎ ǇǊƛƳƛǘƛǾŜ ŎƻƴƴŜŎǘƛǾŜǎ ŀƴŘ ŘŜŦƛƴŜ ǘƘŜ ƻǘƘŜǊ όǎǘŀƴŘŀǊŘύ ŎƻƴƴŜŎǘƛǾŜǎ 

in terms of them. Thus, 

  ὖ Ö ὗ   := ͯ ὖͯɆͯ ὗ  

  ὖṓὗ := ͯ ὖɆͯ ὗ  

  ὖḳὗ := ͯ ὖɆͯ ὗ Ɇͯ ὖͯɆὗ  

 We had considerable practice with this in Critical Reasoning 21; however you may wish to 

check that these are semantically correct by verifying them using truth-tables. 

Rem 1.11 Other choices of primitive connectives are possible such as taking ͯ and Ö as primitive and 

defining the others in terms of them. Thus, 

  ὖɆὗ   := ͯ ὖͯ Ö ͯὗ  

  ὖṓὗ := ͯ ὖ Ö ὗ 

  ὖḳὗ := ͯ ὖͯ Ö ͯὗ Ö ͯ ὖ Ö ὗ  

 The connectives ͯ and ṓ can also be taken as primitive which is a very frequent choice 

when axiomatizing a logic. Again see Critical Reasoning 21.   (p. 12) 
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Models 

Defn. 1.12 An interpretation ) ר Ƞ Ȣ is called a model for a propositional formula ἐ. In symbols 

ἓṺἐ iff ἐἓ 4 

Thrm. 1.13 A propositional formula ἐ is valid (Ṻἐ iff ἐͯ is unsatisfiable. 

Defn. 1.14 Let ֿב be a set of formulae, then 

is satisfiable iff there is an interpretation mapping each element ἐɴ בֿ ¶  .to T בֿ

¶ An interpretation ) is called a model for ֿב. In symbols: ἓṺֿב iff ἓ is a model for all 

ἐɴ  (p. 14)     .בֿ

 

Logical Consequence 

Defn. 1.15 A propositional formula ἐ is a (propositional) consequence of a set ֿב of propositional 

formulae. In symbols ֿבṺἐ iff for every interpretation ) it holds that if )Ṻֿב then )Ṻἐ. 

¶ We also say that the set ֿב of formulae entails the formula ἐ. By convention, in the 

case that ֿב ἑ we just write ἑṺἐ instead of ἑ Ṻἐ. 

¶ ἐ is valid or a tautology - Ṻἐ for short - iff ἐ evaluates to T under every 

interpretation. 

¶ ἐ is a contradiction iff ἐ evaluates to F under every interpretation. 

Thrm. 1.16  Let ἐ; ἐΤ Χ Τἐ be propositional formulae, then     

  ἐΤ Χ Τἐ Ṻἐ holds iff Ṻ ȣ ἐɆἐ Ɇȣ Ɇἐ ṓἐ holds. 

¶ For classical propositional formulae ἐ and ἑ, it holds that ἐḳἑ iff ἐṺἑ and 

ἑ Ṻἐ.               (p. 14) 

Arguments 

Defn. 1.17 A (deductive) argument is a pair Ƞἐ with a formula ἐ and a set of formulae . 

¶ The formulae in  are called the premises and the formula ἐ is called the 

conclusion. 

¶ We say that an argument is valid iff the set consisting of the premises entails the 

ŀǊƎǳƳŜƴǘΩǎ ŎƻƴŎƭǳǎƛƻƴΣ i.e. Ṻἐ. 

¶ We also say that the conclusion of a valid argument follows from the premises. 

               (p. 16) 

Rem 1.18 Lƴ ǘƘƛǎ άǊŜƳŀǊƪέ Fronhöfer explains how deductive arguments are traditionally displayed 

by writing the premises, one per line, followed by a separator line and then the 

conclusion. We are already familiar with this format, having used it consistently 

throughout. He also provides two examples of how to test the validity of an argument 

using the longer truth table method. Again, we are familiar with this technique and 
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indeed went one step further by introducing the sorter truth table technique in Critical 

Reasoning 09. 

Rem. 1.19 Two noteworthy laws of classical logic: 

¶ The Law of Non-Contradiction is the negation of the formula ἋɆͯ Ἃ which is a 

contradiction in classical logic, hence ͯ ἋɆͯ Ἃ  is a tautology. 

¶ The Law of Excluded Middle (see above) symbolised as ἐ Ö ͯἐ is a tautology in 

classical logic. The same holds true for the alternative Ψexclusive orΩ (XOR) 

encountered in Critical Reasoning 05.          (p. 18) 

 

Formal Conception of Many-Valued Logic 

Rem. 1.20 We have the same set of CL formulae (cf. Definitions 1.1 and 1.2) and the same (standard) 

connectives: ͯ , ÖΣ ω ŀƴŘ ḳ,  which may be extended by additional ones and their symbols. 

However now we interpret formulae differently: 

¶ 3-valued logics ר 4Ƞ &Ƞ ṩ  (true, false, neutral) 

  We understand ר 4Ƞ & as a subset of ר     

  or we assume a canonical embedding of ר  into ר . 

¶ By ᶻ we still denote the truth function which classically interprets the connective 

.֙ 

By ᶻȠ ᶻȠȣ we denote the truth functions which classically interpret the 

ŎƻƴƴŜŎǘƛǾŜ ֙ in different many-valued logics, where the subscript refers to the 

respective logic. 

¶ We use the same subscripts on connectives, thus for example we write F ṓ╚ G if 

we want to express that we are interested in the formula F ṓ G as a formula of 

the logic which interprets the connective ֙  ōȅ ᶻ.   (p. 26) 

Defn. 1.21 A 3-valued (propositional) interpretation ) ר Ƞ Ȣ  of a language fl of a 3-valued logic 

X with connectives referred to by  consists of the set of truth values ר 4Ƞ &Ƞ ṩ  

and a mapping ȢḊ flᴼר  with 

 ἐἓ
ᶻ ἑἓ ÉÆ ἐ ÉÓ ÏÆ ÔÈÅ ÆÏÒÍ ἑ
 
ἑ ἓ

╧
ᶻ ἑ ἓ ÉÆ ἐ ÉÓ ÏÆ ÔÈÅ ÆÏÒÍ ἑ ╧ἑ

 

Rem. 1.22 Consequently, with ר  there are more possible truth functions. Therefore sometimes 

additional connectives have no classical counterpart or share the same classical 

counterpart, e.g. there are two different negations which coincide on ר . 

 Different many-valued logics differ 

- in the choice of truth functions for (standard) connectives and 
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- sometimes by additional connectives: additional negations, additional 

conjunctions, etc.       (p. 26) 

 

YƭŜŜƴŜΩǎ {ǘǊƻƴƎ о-Valued Logic 

Defn. 1.23 !ƴ ŀƭǇƘŀōŜǘ ƻŦ YƭŜŜƴŜΩǎ {ǘǊƻƴƎ о-Valued Logic ἕἡ consists of 

¶ a set ὴȠ ὴȠ ὴȣ  of propositional variables 

¶ the set of standard connectives ͯ ρȠ Ɇ ςȠ Ö ςȠ ṓ ςȠ ḳ ς   together 

with their arities 

¶ ǘƘŜ ǎǇŜŎƛŀƭ ŎƘŀǊŀŎǘŜǊǎ άόά ŀƴŘ άύέ       

 

Defn. 1.24 Truth functions of ἕἡ using ὺȟύ      (P. 30) 

 

  ὺɆᶻύ               ὺ Öᶻ ύ 

 

ὺ ͯᶻὺ  ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T F  T T ṩ F  T T T T 
ṩ ṩ  ṩ ṩ ṩ F  ṩ T ṩ ṩ 
F T  F F F F  F T ṩ F 

 

 

 ὺṓᶻύ              ὺḳᶻύ 

 

ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T T ṩ F  T T ṩ F 
ṩ 4 ṩ ṩ  ṩ ṩ ṩ ṩ 
F T T T  F F ṩ T 

 

 

Colour Key: Black ς normal; Blue ς uniform; Red ς regular. See definitions 1.25, 1.28 and 1.30 below. 

 

Defn. 1.25 A ὲ-ary propositional truth function Ὢȡ ר ᴼר  (of a 3-valued logic) is normal iff it 

is the extension of a ὲ-ary two-valued truth function Ὢȡ ר ᴼר , i.e. Ὢȿר Ὢ. 

¶ A ὲ-ary connective ὲ of a many-valued logic X is a normal extension of a 

classical ὲ-ary  ὲ, or normal for short, iff ᶻ is normal and ᶻȿר ᶻ. 

¶ A many-valued logic is called normal iff the truth tables of all its standard 

connectives are normal. 

Rem. 1.26 A normal many-valued logic can be seen as a generalization or an extension of 

(classical) two-valued logic. 

Lemma 1.27 All the connectives ͯ Ƞ ɆȠ ÖȠ ṓ Ƞ ḳ  of ἕἡ are normal, i.e. ἕἡ is a normal logic.  

           (p. 32) 
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Defn. 1.28 A propositional truth function in a 3-valued logic is uniform iff for every row/column of 

its truth table the following holds: 

¶ If all entries (of this row/column) in the classically restricted table are the same - 

i.e. either 4 or & - then this value is also in the non-classical cell (of this 

row/column). 

¶ A connective is uniform iff its truth-function is uniform. 

¶ A logic is called uniform if the tables of all its standard connectives are uniform. 

Lemma 1.29  All the connectives ͯ Ƞ ɆȠ ÖȠ ṓ Ƞ ḳ  of ἕἡ are uniform, i.e. ἕἡ is a uniform logic.

           (p. 32) 

Defn. 1.30 A propositional truth function in a 3-valued logic is regular iff it has the following 

feature: 

¶ A given column/row contains TȭÓ ÏÒ FȭÓ in the ṩ row/column implies the 

column/row consists entirely of 4Ωǎ or entirely of &Ωǎ. (Kleene, 1952) 

¶ A connective is regular iff its truth function is regular. 

¶ A logic is called regular if the tables of all its standard connectives are regular. 

Lemma 1.31 Normality and Regularity uniquely determine 3-valued negation. 

 Proof: There is just one ṩ - row with just one position in a table which defines a unary 

truth function. See truth table for ͯᶻὺ above. Regularity would allow it to contain a 4 or 

a & in this position just in case the entire column would consist entirely of 4Ωǎ or entirely 

of &ΩǎΣ which contradicts normality.   (p. 34) 

Lemma 1.32 All the connectives ͯ Ƞ ɆȠ ÖȠ ṓ Ƞ ḳ  of ἕἡ are regular, i.e. ἕἡ is a regular logic. 

Lemma 1.33 The truth functions of ἕἡ are the strongest possible regular extension of the classical 

2-valued (standard) functions: They are regular and have a 4 or a & in each position 

where any regular extension of the 2-valued tables can have a 4 or a &. 

Rem 1.34 {ǳƳƳŀǊƛȊƛƴƎ YƭŜŜƴŜΩǎ {ǘǊƻƴƎ /ƻƴƴŜŎǘƛǾŜǎ ǿŜ Ƴŀȅ ǎŀȅΥ 

¶ Kleene exploited normality, regularity and uniformity 

¶ and just filled in the remaining gaps with ṩ   (p. 34) 

E.g. 1.35 Truth-tables for some formulae in ἕἡ: Using the same skills already mastered in Critical 

Reasoning 05 we proceed to populate the truth tables that follow with 4ΩǎΣ &,s and now 

also ṩΩǎ according to the definitions of the connectives ͯȠ ɆȠ ÖȠ ṓ Ƞ ḳ  in their 

respective truth-tables above. The connective with the widest scope is highlighted. 

          (p. 36) 
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P Ö ͯ  P  P ṓ  (P ṓ  Q)  (P Ɇ Q) ṓ  (P Ö  Q) 

T T F T  T T T T T  T T T T T T T 
ṩ ṩ ṩ ṩ  T ṩ T ṩ ṩ  T ṩ ṩ T T T ṩ 
F T T F  T F T F F  T F F T T T F 
     ṩ T ṩ T T  ṩ ṩ T T ṩ T T 
     ṩ ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
     ṩ ṩ ṩ ṩ F  ṩ F F T ṩ ṩ F 
     F T F T T  F F T T F T T 
     F T F T ṩ  F F ṩ T F ṩ ṩ 
     F T F T F  F F F T F F F 

            

Defn. 1.36 Fronhöfer points out that we can take ͯ  and Ɇ as primitive connectives and introduce 

the other connectives according to the following definitions: 

 ὖ Ö ὗ  := ͯ ͯ ὖɆͯὗ  

 P ṓ  Q := ͯ ὖɆͯὗ  

 ὖḳ ὗ :=  ͯ ὖɆͯὗ Ɇͯ ͯὖɆὗ  

 While this is useful when axiomatizing a logic it does make the already laborious truth-

table method even more tedious. We therefore pass over the further examples on 

pages 36 - 38. 

Defn. 1.37 Tautologies and contradictions in a 3-valued logic are defined as follows: 

¶ A tautology in a 3-valued logic is a formula F that has the value 4 on all 

interpretations. (There is no interpretation on which F has either the value & or 

the value ṩ) 

¶ A contradiction in a 3-valued logic is a formula F that has the value & on all 

interpretations. (There is no interpretation on which F has either the value 4 or 

the value ṩ) 

Lemma 1.38 There are neither tautologies nor contradictions in ἕἡ. 

 Proof: Examining the truth functions shows that whenever all of the propositional 

variables occurring in a compound formula F have the value ṩ, so does the 

compound formula F. Therefore for any formula F there is at least one interpretation 

on which F has the value ṩ. Consequently, no formula can be either a tautology or a 

contradiction in ἕἡ.       (p. 38) 

 
The Normality Lemma 

Defn. 1.39 We call a 3-valued truth-value assignment classical iff it assigns only the classical 

values 4 and/or & to propositional variables. 

Lemma 1.40 In a normal 3-valued logic, a classical interpretation behaves exactly as it does in 

classical logic: 
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¶ Every formula that is true on that interpretation in the 3-valued logic is also 

true on that interpretation in classical logic, and 

¶ Every formula that is false on that interpretation in the 3-valued logic is also 

false on that interpretation in classical logic. 

Proof: The lemma follows from the fact that the connectives in a normal system of 

connectives behave exactly as they do in classical logic whenever they operate on 

formulae with classical truth-values.     (p. 40) 

 

Entailment (Proper) 

Defn. 1.41 We say that a set of formulae  entails a formula F in 3-valued logic iff whenever all 

the formulae in  are true, then F will be true also. (In other words, there is no 

interpretation on which all the formulae in  have the value 4 while F has the value & 

or ṩ. 

 Furthermore, an argument is valid in 3-valued logic iff the set of its premises entails 

its conclusion. 

Rem 1.42 As before we use the standard notation for entailment such that Ṻ F means that 

the set of formulae  entails the formula F. 

¶ Since entailment depends on the logic under consideration we continue to 

use Ṻ (without a subscript) to indicate entailment in classical logic and 

introduce Ṻ  to indicate entailment in ἕἡ.   (p. 40) 

Lemma 1.43 For every formula F in CL it is the case that if Ṻἕ F then Ṻ F. (I.e. every 

entailment in ἕἡ is also an entailment in classical propositional logic.) 

 Proof: Assume that Ṻἕ F. By the definition of entailment, on every classical (and 

non-classical) interpretation in ἕἡ on which the formulae in  are all true, F is also 

true. But since ἕἡ is normal, the same is true in classical logic by the Normality 

Lemma (1.40). Therefore Ṻἕ is the case as well.   (p. 42) 

E.g. 1.44 On the other hand, some but not all, classical entailments hold in ἕἡ.The following 

classically valid argument is also valid in ἕἡ. 

 P 
  P ṓ Q /Ḉ Q 
 
  can be represented according to the truth-table over page. 

 Colour Key: Cyan or green - classical interpretation; Green - classical valid argument 

(P. 42) 
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P P ṓ  Q Q 

T T T T T 
T T ṩ ṩ ṩ 
T T F F F 

 ṩ ṩ T T T 
 ṩ ṩ ṩ ṩ ṩ 
 ṩ ṩ ṩ F F 
F F T T T 
F F T ṩ ṩ 
F F T F F 

 

Lemma 1.45 Not all entailments of classical propositional logic hold inἕἡ. 

 Proof: The argument ͯ ὖḳὗ   /ḈὖḳὙ Ö ὗḳὙ  is classically valid but not 

valid in ἕἡ. It is classically valid because for the premise to be true 0 and 1 must 

have different truth-values. But no matter what the truth-value of 2, it will be 

equivalent to either one or the other of 0 or 1, since there are only two truth-values 

in classical logic. In other words, the validity depends crucially on the fact that 

classical logic is bivalent. 

 However in ἕἡ, the premise ͯ ὖḳ ὗ  can have the value 4 while the conclusion 

has the value ṩ.  For ͯ ὖḳ ὗ  to be true in ἕἡ, ὖḳ ὗ  must be false, which 

means that 0 and 1 must have άƻǇǇƻǎƛǘŜέ ŎƭŀǎǎƛŎŀƭ truth-values. But if 2 has the 

value ṩ, then ὖḳὙ Ö ὗḳὙ  has the value ṩ.   (p. 44) 

 See the truth table over page. 

  Colour Key: Cyan or green - classical interpretation; Green - classical valid argument; 

red invalid argument in ἕἡ. 
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ͯ  (P ḳ  Q)  ((P ḳ  R) Ö (Q ḳ  R)) 

F T T T  T T T T T T T 
F T T T  T ṩ ṩ ṩ T ṩ ṩ 
F T T T  T F F F T F F 
ṩ T ṩ ṩ  T T T T ṩ ṩ T 
ṩ T ṩ ṩ  T ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ T ṩ ṩ  T F F ṩ ṩ ṩ F 
T T F F  T T T T F F T 
T T F F  T ṩ ṩ ṩ F ṩ ṩ 
T T F F  T F F T F T F 
ṩ ṩ ṩ T  ṩ ṩ T T T T T 
ṩ ṩ ṩ T  ṩ ṩ ṩ ṩ T ṩ ṩ 
ṩ ṩ ṩ T  ṩ ṩ F ṩ T F F 
ṩ ṩ ṩ ṩ  ṩ ṩ T ṩ ṩ ṩ T 
ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ ṩ ṩ  ṩ ṩ F ṩ ṩ ṩ F 
ṩ ṩ ṩ F  ṩ ṩ T ṩ F F T 
ṩ ṩ ṩ F  ṩ ṩ ṩ ṩ F ṩ ṩ 
ṩ ṩ ṩ F  ṩ ṩ F T F T F 
T & F T  & F T T T T T 
T & F T  & ṩ ṩ ṩ T ṩ ṩ 
T & F T  & T F T T F F 
ṩ & ṩ ṩ  & F T ṩ ṩ ṩ T 
ṩ & ṩ ṩ  & ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ & ṩ ṩ  & T F T ṩ ṩ F 
F & T F  & F T F F F T 
F & T F  & ṩ ṩ ṩ F ṩ ṩ 
F & T F  & T F T F T F 

 

 
Semantical Equivalences 

 ὖ Ö ὗ ḳ ὗ Ö ὖ    ὖ Ɇὗ ḳ ὗ Ɇὖ 

 ὖ Ö ὗ Ö Ὑ ḳ ὖÖ ὗ Ö Ὑ  ὖ Ɇ ὗ ɆὙ ḳ ὖ Ɇὗ ɆὙ 

 ὖɆ ὗ  Ö  Ὑ ḳ ὖɆὗ Ö ὖ ɆὙ  

 ὖ Ö ὗ Ɇ Ὑ ḳ ὖ Ö ὗ Ɇ ὖ Ö Ὑ  

 ὖ Ɇ ὗ Ö ὖ ḳὖ    ὖ Ö ὗ Ɇ ὖ ḳὖ 

 ὖ ṓ  ὗ ṓ  Ὑ ḳ ὗ ṓ  ὖ ṓ  Ὑ  

 ὖ ṓ  ὗ ṓ  Ὑ ḳ ὗ Ɇ ὖ ṓ  Ὑ 

 Recall: There are no tautologies in ἕἡ!     (p. 46) 
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_ǳƪŀǎƛŜǿƛŎȊΩǎ о-Valued Logic 

Alphabet and Formulae 

Defn. 1.46 !ƴ ŀƭǇƘŀōŜǘ ƻŦ _ǳƪŀǎƛŜǿƛŎȊΩǎ о-Valued Logic l  consists of 

¶ a set ὴȠ ὴȠ ὴȣ  of propositional variables 

¶ the set of standard connectives ͯ ρȠ ɆςȠÖ ςȠ ṓ ςȠ ḳ ς  together with 

their arities 

¶ The special ŎƘŀǊŀŎǘŜǊǎ άόά ŀƴŘ άύέ 

  Formulae of l are defined as with classical propositional logic. 

Rem 1.47 Fronhöfer uses red rather than a subscript to distinguish the connectives of 3-valued 

_ǳƪŀǎƛŜǿƛŎȊ ƭƻƎƛŎ however we have chosen to simply preface any such discussion or 

ŎƻƴƴŜŎǘƛǾŜǎ ǿƛǘƘ ǘƘŜ ǎȅƳōƻƭ ΨlΩΦ 

Rem 1.48 We denote entailment in l by Ṻ.      (p. 50) 

Defn. 1.49 Truth functions of l using ὺȟύ 

              ὺɆᶻύ                     ὺ Öᶻ ύ 

 

ὺ ͯᶻὺ  ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T F  T T ṩ F  T T T T 
ṩ ṩ  ṩ ṩ ṩ F  ṩ T ṩ ṩ 
F T  F F F F  F T ṩ F 

 

      ὺṓᶻύ              ὺḳᶻύ 

 

ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T T ṩ F  T T ṩ F 
ṩ 4 T ṩ  ṩ ṩ T ṩ 
F T T T  F F ṩ T 

 

The colour key is as before but note how in l a neutral implies a neutral is true. (p. 52) 

 

Normality, Uniformity and Regularity 

Rem. 1.50 Note that although the truth-tables for the connectives ṓ and ḳ ŘƛŦŦŜǊ ŦǊƻƳ YƭŜŜƴŜΩǎ 

truth-tables, the l connectives are also both normal and uniform. However, 

¶ _ǳƪŀǎƛŜǿƛŎȊΩǎ truth-tables are NOT all regular:  The truth-tables for the connectives 

ṓ and ḳ are not regular because of the middle rows or columns. (p. 52) 
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E.g. 1.51 Consider again the statements ὖ Ö ͯὖ; ὖṓ ὖṓὗ  and ὖɆὗ ṓ ὖ Ö ὗ   in ἕἡfor 

which we drew up truth tables in e.g. 1.35. Here we do the same for the above 

statements in l and note the differences.      (p. 54) 

P Ö  ͯ P  P ṓ (P ṓ Q)  (P Ɇ Q) ṓ (P Ö Q) 

T T F T  T T T T T  T T T T T T T 
ṩ ṩ ṩ ṩ  T ṩ T ṩ ṩ  T ṩ ṩ T T T ṩ 
F T T F  T F T F F  T F F T T T F 
     ṩ T ṩ T T  ṩ ṩ T T ṩ T T 
     ṩ T ṩ T ṩ  ṩ ṩ ṩ T ṩ ṩ ṩ 
     ṩ T ṩ ṩ F  ṩ F F T ṩ ṩ F 
     F T F T T  F F T T F T T 
     F T F T ṩ  F F ṩ T F ṩ ṩ 
     F T F T F  F F F T F F F 

 

Rem 1.52  In l we may express  ὊḳὋ  in terms of connectives of l according to the following 

table.  

(F ḳ G) ḳ ((F ṓ G) Ɇ (G ṓ F)) 

T T T T T T T T T T T 
T F ṩ F T ṩ ṩ ṩ ṩ T T 
T F F T T F F F F T T 
ṩ F T F ṩ T T ṩ T ṩ ṩ 
ṩ T ṩ T ṩ T ṩ T ṩ T ṩ 
ṩ F F F ṩ ṩ F ṩ F T ṩ 
F F T T F T T F T F F 
F F ṩ F F T ṩ ṩ ṩ ṩ F 
F T F T F T F T F T F 

 
 

 This implies that for every interpretation of l it is the case that: 

 ἐἓ ἑἓ iff ἐṓἑɆἑṓἐ ἓ 4 and 

 iff both ἐṓἑἓ 4  and ἑṓἐἓ 4 

Therefore, testing &ḳ' means testing both &ṓ' and 'ṓ& or testing for 'ḳ&. This 

is not the case for ἕἡ.       (p. 54) 

Rem 1.53 Note that ὖḳὗ  is not equivalent to ὖṺὗ and ὗ Ṻὖ. This can be shown 

according to the following truth table over page. The lines that show the difference are 

highlighted in magenta. (For the purposes of meta-level reasoning, Fronhöfer justifiably 

overlooks a couple of conventions.)      (p. 56) 
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({P} Ṻ Q and {Q} Ṻ P) ḳ (P ḳ Q) 

T T T T T T T T T T T 
T F ṩ F ṩ T T T T F ṩ 
T F F F F T T T T F F 
  ṩ T T F T F ṩ T ṩ F T 
  ṩ T ṩ T ṩ T ṩ T ṩ T ṩ 
  ṩ T F T F T ṩ F ṩ F F 

F T T F T F F T F F T 
F T ṩ T ṩ T F F F F ṩ 
F T F T F T F T F T F 

   

In Search of Primitive Connectives 

Rem 1.54 Because the truth-tables for ṓ and ḳ assign a T to a formula whose direct sub-formulae 

both have the value ṩ, neither ṓ nor ḳ can be defined in l by a formula using the 

other three connectives, ͯΣ ω  ŀƴŘ Ö. 

 Proof: If we construct a formula F in l using only ͯ Σ ω  ŀƴŘ Ö as connectives, then 

whenever the atomic formulae from which F is constructed all have the value ṩ, then F 

will also have the value ṩ. However in l, the formulae A ṓ A and A ḳ A both have the 

value T when A has the value ṩ. 

 _ǳƪŀǎƛŜǿƛŎȊ therefore took ͯ  and ṓ as primitive for defining the other three 

connectives. See below.       (p. 56) 

Defn. 1.55 ὖ Ö ὗ   := ὖṓὗ ṓὗ 

 ὖɆὗ   := ͯ ὖͯ Ö ͯὗ ͯ ὖͯṓ ὗͯ ṓ ὗͯ  

 ὖḳὗ := ὖṓὗ Ɇὗṓὖ      (p. 56) 

 The definition of Ἶ in l: According to Fronhöfer, Prior (1953 p. 320) compared the 

truth-tables of classically equivalent formulae in l. Recall from Critical Reasoning 07 

that according to Material Implication in classical logic: ὖṓὗ ḳ ὖͯ Ö ὗ . In l 

however: 

¶ ὖṓὗ is not equivalent to ͯὖ Ö ὗ but is a little weaker, also 

¶ ὖṓὗ is implied by ͯὖ Ö ὗ  but not the other way round. 

Constructing side-by-side truth-tables for ὖͯ Ö ὗ ṓ ὖṓὗ  and ὖṓὗ ṓ

ὖͯ Ö ὗ  in lreveals the difference. While the former is a tautology, the latter is not. 

See below. The magenta line highlights the crucial difference.   (p. 58) 
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(  ͯ P v Q) ṓ (P ṓ Q)  (P ṓ Q) ṓ (  ͯ P v Q) 
F T T T T T T T  T T T T F T T T 
F T ṩ ṩ T T ṩ ṩ  T ṩ ṩ T F T ṩ ṩ 
F T F F T T F F  T F F T F T F F 
ṩ ṩ T T T ṩ T T  ṩ T T T ṩ ṩ T T 
ṩ ṩ ṩ ṩ T ṩ T ṩ  ṩ T ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ ṩ F T ṩ ṩ F  ṩ ṩ F T ṩ ṩ ṩ F 
T F T T T F T T  F T T T T F T T 
T F T ṩ T F T ṩ  F T ṩ T T F T ṩ 
T F T F T F T F  F T F T T F T F 

 

Similarly, in l 

¶ ὖ Ö ὗ is not equivalent to ͯὖṓὗ  but is a little stronger, also 

¶ ὖͯṓὗ is implied by ὖ Ö ὗ but not the other way round. 

This time, constructing side-by-side truth-tables for ὖͯṓὗ ṓ ὖ Ö ὗ  and ὖ Ö ὗ ṓ

 ͯ  ὖṓὗ  in lreveals the difference. While the latter is a tautology, the former is not. 

(  ͯ P ṓ Q) ṓ (P v Q)  (P v Q) ṓ (  ͯ P ṓ Q) 
F T T T T T T T  T T T T F T T T 
F T T ṩ T T T ṩ  T T ṩ T F T T ṩ 
F T T F T T T F  T T F T F T T F 
ṩ ṩ T T T ṩ T T  ṩ T T T ṩ ṩ T T 
ṩ ṩ T ṩ ṩ ṩ ṩ ṩ  ṩ ṩ ṩ T ṩ ṩ T ṩ 
ṩ ṩ ṩ F T ṩ ṩ F  ṩ ṩ F T ṩ ṩ ṩ F 
T F T T T F T T  F T T T T F T T 
T F ṩ ṩ T F ṩ ṩ  F ṩ ṩ T T F ṩ ṩ 
T F F F T F F F  F F F T T F F F 

 
Again, the magenta line highlights the crucial difference. Note however the classical 
equivalence in both tables above.      (p. 58) 
 
According to Fronhöfer, in order to define ὖ Ö ὗ in terms of ṓ, we require something 

which is stronger than ͯὖṓὗ in l but which will be equivalent to it in classical logic. 

Thus for the lines of the truth-tables in l where the value ṩ is not involved ὖ Ö ὗ and 

ὖͯṓὗ do coincide.     (p. 60) 

One way in which to strengthen the logical force of an implicative statement is to 

weaken the antecedent. Thus, 

¶ Ψ.ŀǊǘ ƻǊ tƘƛƭ ǿƛƭƭ ŎƻƳŜΩ ƛǎ ǿŜŀƪŜǊ ǘƘŀƴ ǘƘŜ ŀǎǎŜǊǘƛƻƴ ǘƘŀǘ ΨtƘƛƭ ǿƛƭƭ ŎƻƳŜΦΩ  

On the other hand,  

¶ ΨLŦ .ŀǊǘ ƻǊ tƘƛƭ ŎƻƳŜǎ, I shall be surprisedΩ ƛǎ ŀ ǎǘǊƻƴƎŜǊ ǘƻǘŀƭ ŀǎǎŜǊǘƛƻƴ ǘƘŀƴ ΨLŦ 

tƘƛƭ ŎƻƳŜǎ L ǎƘŀƭƭ ōŜ ǎǳǊǇǊƛǎŜŘΦΩ  

IƻǿŜǾŜǊΣ ǘƘŜǊŜ ŀǊŜ ŎŀǎŜǎ ƛƴ ǿƘƛŎƘ ǘƘƛǎ άmoveέ ǿƛƭƭ ƳŜǊŜƭȅ ƭŜŀǾŜ ǘƘŜ ŦƻǊŎŜ ƻŦ ǘƘŜ ƻǊƛƎƛƴŀƭ 

implication unaltered. E.g. The statements 
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¶ ΨLŦ .ŀǊǘ ƻǊ tƘƛƭ ŎƻƳŜǎΣ tƘƛƭ ǿƛƭƭ ŎƻƳŜΩ ŀƴŘ ΨLŦ .ŀǊǘ ŎƻƳŜǎ tƘƛƭ ǿƛƭƭ ŎƻƳŜΩ ŀǊŜ 

neither stronger than the other since it will be true in any case that Phil will 

come if Phil comes.      (p. 60) 

A statement that is weaker than ͯὖ in the antecedent ͯὖṓὗ is ὖṓὗ. In both 

classical logic and lΣ ΨὖͯΩ ƛƳǇƭƛŜǎ ΨὖṓὗΩ ǊŜƎŀǊŘƭŜǎǎ ƻŦ ǘƘŜ ǘǊǳǘƘ-value of ὗ but not 

always the other way round. 

 ͯ P ṓ (P ṓ Q)  (P ṓ Q) ṓ  ͯ P 
F T T T T T  T T T F F T 
F T T T ṩ ṩ  T ṩ ṩ ṩ F T 
F T T T F F  T F F T F T 
ṩ ṩ T ṩ T T  ṩ T T ṩ ṩ ṩ 
ṩ ṩ T ṩ T ṩ  ṩ T ṩ ṩ ṩ ṩ 
ṩ ṩ T ṩ ṩ F  ṩ ṩ F T ṩ ṩ 
T F T F T T  F T T T T F 
T F T F T ṩ  F T ṩ T T F 
T F T F T F  F T F T T F 

 

 Colour Key: The green and cyan rows show that ὖṓὗ is weaker than ͯὖ, while the 

green rows are the classical cases.     (p. 60) 

 Hence the replacement of ͯὖ in ͯ ὖṓὗ by the weaker proposition ὖṓὗ will yield 

either a stronger assertion than the original ὖͯṓὗ or one equivalent to it; and it turns 

out to yield an equivalent formula in classical logic and a stronger one in l. 

In classical logic: 

¶ Replacing ͯὖṓὗ by ὖṓὗ ṓὗ has something of the artificiality of 

replacing ὖṓὗ by ὖ Ö ὗ ṓὗ in the example above, and makes no 

difference. 

¶ In fact it amounts to replacing ͯὖṓὗ by ὖͯ Ö ὗ ṓὗ, since in classical 

logic 0ṓ1 is equivalent to ͯ0 Ö 1. 

¶ Note: ὖͯ Ö ὗ ṓὗ ḳ ὖɆͯ ὗ Ö ὗ ḳ ὖ Ö ὗ Ɇ ὗͯ Ö ὗ  

However in l: 
 

¶ When both ὖ and ὗ have the truth value ṩ, ͯ ὖṓὗ and ὖṓὗ ṓὗ will 

have different truth values, the former being true and the latter not; and this 

is precisely the point at which in l the truth-tables for ͯ ὖṓὗ and ὖ Ö ὗ 

are different. 

¶ Therefore ὖṓὗ ṓὗ  serves ideally for the definition of ὖ Ö ὗ. See the 

side-by-side truth-tables below, where magenta line highlights the crucial 

difference and similarity.      (p. 62) 
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 ͯ P ṓ Q  (P ṓ Q) ṓ Q  P v Q 
F T T T  T T T T T  T T T 
F T T ṩ  T ἄ ṩ T ṩ  T T ṩ 
F T T F  T F F T F  T T F 
ṩ ṩ T T  ṩ T T T T  ṩ T T 
ṩ ṩ T ṩ  ṩ T ṩ ṩ ṩ  ṩ ṩ ṩ 
ṩ ṩ ṩ F  ṩ ṩ F ṩ F  ṩ ṩ F 
T F T T  F T T T T  F T T 
T F ṩ ṩ  F T ṩ ṩ ṩ  F ṩ ṩ 
T F F F  F T F F F  F F F 
  

 

Lemma 1.56 Every formula that is a tautology in l is also a tautology in classical logic, and every 

formula that is a contradiction in l is also a contradiction in classical logic. 

 Proof: A formula F that is a tautology in l is also true in l on every classical truth-

value assignment. Since l is normal, it follows from the Normality Lemma 1.40 that F is 

true on every interpretation in classical logic. Hence, F is a tautology in classical logic. 

Similar reasoning holds for contradictions.     (p. 64) 

Lemma 1.57 Not every formula that is a tautology in classical logic is also a tautology in l, and not 

every formula that is a contradiction in classical logic is also a contradiction in l. 

 Proof: Any instance of the Law of the Excluded Middle, for example A Ö ͯA, is an 

example of a classical tautology that does not always have the value 4 in l. (See e.g. 

1.51 above.) 

 Alternatively, the formula A Ɇ ͯ A which is a classical contradiction, is not a contradiction 

in l. The formula has the value ṩ when A has the value ṩ according to the following 

truth table:       (p. 64) 

A Ɇ  ͯ A 
T F F T 
ṩ ṩ ṩ ṩ 
F F T F 

         
Another example is the formula ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ . This formula 

always has the value T in classical logic; however in l it has the value ṩ when P and Q 

have the value ṩ and R has the value F. Again, this can be shown by a truth-table, over 

page, where magenta line highlights the crucial difference.   (p. 66) 
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(P ṓ (Q ṓ R)) ṓ ((P ṓ Q) ṓ (P ṓ R)) 

T T T T T T T T T T T T T 
T ṩ T ṩ ṩ T T T T ṩ T ṩ ṩ 
T F T F F T T T T F T F F 
T T ṩ T T T T ṩ ṩ T T T T 
T T ṩ T ṩ T T ṩ ṩ T T ṩ ṩ 
T ṩ ṩ ṩ F T T ṩ ṩ ṩ T F F 
T T F T T T T F F T T T T 
T T F T ṩ T T F F T T ṩ ṩ 
T T F T F T T F F T T F F 
ṩ T T T T T ṩ T T T ṩ T T 
ṩ T T ṩ ṩ T ṩ T T T ṩ T ṩ 
ṩ ṩ T F F T ṩ T T ṩ ṩ ṩ F 
ṩ T ṩ T T T ṩ T ṩ T ṩ T T 
ṩ T ṩ T ṩ T ṩ T ṩ T ṩ T ṩ 
ṩ T ṩ ṩ F ṩ ṩ T ṩ ṩ ṩ ṩ F 
ṩ T F T T T ṩ ṩ F T ṩ T T 
ṩ T F T ṩ T ṩ ṩ F T ṩ T ṩ 
ṩ T F T F T ṩ ṩ F T ṩ ṩ F 
& T T T T T & T T T & T T 
& T T ṩ ṩ T & T T T & T ṩ 
& T T F F T & T T T & T F 
& T ṩ T T T & T ṩ T & T T 
& T ṩ T ṩ T & T ṩ T & T ṩ 
& T ṩ ṩ F T & T ṩ T & T F 
& T F T T T & T F T & T T 
& T F T ṩ T & T F T & T ṩ 
& T F T F T & T F T & T F 

 

Rem. 1.58 Note that Lemma 1.57 does not claim that all classical tautologies fail to be tautologies 

of l, nor that all classical contradictions fail to be contradictions of l. A ṓ A is an 

example of a tautology of classical logic that is also a tautology in l. 

Lemma 1.59 Not all entailments of classical propositional logic hold in l.  (p. 68) 

 Proof: Recall the argument in Lemma 1.45, ͯὖḳὗ   /ḈὖḳὙ Ö ὗḳὙ  which is 

classically valid but not valid in l. It is classically valid because for the premise to be 

true ὖ and ὗ must have different truth-values. But no matter what the truth-value of Ὑ, 

it will be equivalent to one or the other of ὖ or ὗ, since there are only two truth-values 

in classical logic. In other words, the validity depends crucially on the fact that classical 

logic is bivalent. 

 As with ἕἡ, so with l. The premise  ͯ ὖḳὗ  can only have the value 4 if ὖ and ὗ 

ƘŀǾŜ άƻǇǇƻǎƛǘŜέ classical truth values. However if Ὑ has the value ṩ then the 

conclusion has the truth value ṩ. See the truth table over page.  (p. 68) 
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 ͯ 0 ḳ 1 ḳ (P ḳ R) Ö 1 ḳ 2 

F T T T F T T T T T T T 
F T T T F T ṩ ṩ ṩ T ṩ ṩ 
F T T T T T F F F T F F 
ṩ T ṩ ṩ F T T T T ṩ ṩ T 
ṩ T ṩ ṩ F T ṩ ṩ T ṩ T ṩ 
ṩ T ṩ ṩ T T F F ṩ ṩ ṩ F 
T T F F T T T T T F F T 
T T F F F T ṩ ṩ ṩ F ṩ ṩ 
T T F F T T F F T F T F 
ṩ ṩ ṩ T F ṩ ṩ T T T T T 
ṩ ṩ ṩ T F ṩ T ṩ T T ṩ ṩ 
ṩ ṩ ṩ T T ṩ ṩ F ṩ T F F 
F ṩ T ṩ F ṩ ṩ T ṩ ṩ ṩ T 
F ṩ T ṩ F ṩ T ṩ T ṩ T ṩ 
F ṩ T ṩ F ṩ ṩ F ṩ ṩ ṩ F 
ṩ ṩ ṩ F T ṩ ṩ T ṩ F F T 
ṩ ṩ ṩ F F ṩ T ṩ T F ṩ ṩ 
ṩ ṩ ṩ F F ṩ ṩ F T F T F 
T & F T T & F T T T T T 
T & F T F & ṩ ṩ ṩ T ṩ ṩ 
T & F T T & T F T T F F 
ṩ & ṩ ṩ T & F T ṩ ṩ ṩ T 
ṩ & ṩ ṩ F & ṩ ṩ T ṩ T ṩ 
ṩ & ṩ ṩ F & T F T ṩ ṩ F 
F & T F T & F T F F F T 
F & T F F & ṩ ṩ ṩ F ṩ ṩ 
F & T F F & T F T F T F 

 

 Colour Key:  Cyan or green - classical interpretation; green - classical valid argument; red 

ς invalid argument in l; differences to ἕἡ in the truth table.  Clearly, what is a valid 

argument in classical logic can be an invalid argument in l and can also differ in ἕἡ.

          (p. 68) 

Rem 1.60 We note that other classically valid arguments are valid in l. E.g. the classically valid 

argument 

ὖ 
ὖṓὗ ȾḈὗ 
 

 is also valid in l (and in ἕἡ.)      (p. 70) 

 
.ƻŎƘǾŀǊΩǎ LƴǘŜǊƴŀƭ о-Valued Logic 

According to FronhöferΣ ǘƘŜ ƭƛŀǊΩǎ ǇŀǊŀŘƻȄ ŀƴŘ Russell's paradox lead Russian polymath Dmitri 

Bochvar (1909 - 1994) to conclude that the statements involved were meaningless and hence neither 

true nor false, since only meaningful statements can say true or false things. This implies that the 

truth-value ṩ represents meaninglessness. His resulting system is a combination of two sets of 

connectives: 
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¶ an internal system Ἄἓ equivalent to KleeneΩs weak three-valued logic, and 

¶ an external system ἌἏ. (Bochvar, 1937) 

 
Alphabet and Formulae 

Defn. 1.61 !ƴ ŀƭǇƘŀōŜǘ ƻŦ .ƻŎƘǾŀǊΩǎ Lnternal 3-Valued Logic Ἄἓ consists of 

¶ a set ὴȠ ὴȠ ὴȣ  of propositional variables 

¶ the set of standard connectives ͯ  ρȠ Ɇ ςȠ Ö ςȠ ṓ ςȠ ḳ ς  

together with their arities 

¶ tƘŜ ǎǇŜŎƛŀƭ ŎƘŀǊŀŎǘŜǊǎ άόά ŀƴŘ άύέ 

Formulae of Ἄἓ are defined as with classical propositional logic.  (p. 72) 

Defn. 1.62 Truth functions of Ἄἓ using ὺȟύ 

              ὺɆᶻύ            ὺ Öᶻ ύ 

ὺ ͯᶻὺ  ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

 T F  T T ṩ F  T T ṩ T 
ṩ ṩ  ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ 
 F T  F F ṩ F  F T ṩ F 

 

             ὺṓᶻ ύ             ὺḳᶻ ύ 

ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T T ṩ F  T T ṩ F 

ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ 

F T ṩ T  F F ṩ T 

 

 Colour Key: Green truth-values are those that according to .ƻŎƘǾŀǊΩǎ interpretation can 

apply only to meaningful statements or propositions.    (p. 74) 

 
Contagious Truth-Values 

Defn. 1.63 The truth-value ṩ is contagious in Ἄἓ. Whenever a component of a compound formula 

has the value ṩ, so does the compound formula as a whole, regardless of the value of 

any other component.       (p. 74) 

Rem. 1.64 If the truth-value ṩ represents meaninglessness (or absence of meaning), then it is 

quite reasonable that this truth value should be contagious.   (p. 74) 

Rem. 1.65 Kleene also defined a second system of 3-valued connectives, which he called the weak 

connectives. That system is identical to Ἄἓ. We shall nevertheless refer to this system as 

.ƻŎƘǾŀǊΩǎΦ According to Fronhöfer, Kleene was motivated by non-terminating 

computations.        (p. 76) 
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Normality, Uniformity and Regularity 

Rem. 1.66 All connectives of Ἄἓ are normal. 

 All connectives of Ἄἓ are regular, but not the strongest, regular ones. 

 Of the binary connectives only the biconditional is uniform. 

¶ Uniformity of conjunction, for example, would require that a conjunction be 

false whenever one of the conjuncts is. But since the value ṩ is contagious, this 

is not the case. Consequently, conjunction is not uniform. 

¶ Similarly, neither disjunction nor the conditional are uniform in Ἄἓ. (p. 76) 

Rem. 1.67 As with ἕἡ, any way of inter-defining connectives in classical logic will also work in Ἄἓ. 

This is because not only are the connectives normal, but they all agree on what happens 

when a formula has a component with the value ṩ, i.e. the compound formula is also 

assigned the value ṩ. 

 Bochvar chose ͯ  and Ɇ  as primitive connectives and defined: 

 Ὂ Ö  Ὃ   :=  ͯ ͯ ὊɆ ͯ Ὃ 

 Ὂṓ Ὃ  :=  ͯ ὊɆ ͯ Ὃ 

 Ὂḳ Ὃ  :=  Ὂṓ Ὃ Ɇ Ὃṓ Ὂ     (P. 78) 

E.g. 1.68 Consider again the statements ὖ Ö ͯὖ; ὖṓ ὖṓὗ  and ὖɆὗ ṓ ὖ Ö ὗ   as in 

previous examples, this time in Ἄἓ. 

P Ö  ͯ  P  P ṓ  (P ṓ  Q)  (P Ɇ  Q) ṓ  (P Ö   Q) 

T T F T  T T T T T  T T T T T T T 
ṩ ṩ ṩ ṩ  T ṩ T ṩ ṩ  T ṩ ṩ ṩ T ṩ ṩ 
F T T F  T F T F F  T F F T T T F 
     ṩ ṩ ṩ ṩ T  ṩ ṩ T ṩ ṩ ṩ T 
     ṩ ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
     ṩ ṩ ṩ ṩ F  ṩ ṩ F ṩ ṩ ṩ F 
     F T F T T  F F T T F T T 
     F ṩ F ṩ ṩ  F ṩ ṩ ṩ F ṩ ṩ 
     F T F T F  F F F T F F F 

 
 Observe that, 

¶ Neither of the classical tautologies is a tautology in Ἄἓ. 

¶ The second formula receives the value ṩ more often in Ἄἓ than it does in ἕἡ 

or l.         (p. 78) 

Lemma 1.69 No formula in Ἄἓ is a tautology and no formula in Ἄἓ is a contradiction. (p. 80) 

Rem. 1.70 Because ṩ is contagious, every formula has the value ṩ on at least one assignment of 

truth-values to its atomic components, namely on any assignment of truth-value that 
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assigns ṩ to at least one atomic component.  Therefore, no formula is true under every 

interpretation of Ἄἓ. Analogously there are no contradictions in Ἄἓ. (p. 80) 

Lemma 1.71 For every formula F in Ἄἓ it is the case that: If ṺἌἓἐ then Ṻἐ. 

 Proof: This follows from the Normality Lemma 1.40 since Ἄἓ is normal. (p.80) 

Lemma 1.72  Not every entailment that obtains in classical logic also obtains in Ἄἓ. 

 Proof: Again we can use the argument ͯὖḳὗ   /ḈὖḳὙ Ö ὗḳὙ  and assign 

truth-values on Ἄἓ according to the following truth-table, below. (Note that ḳᶻ is 

identical to ḳᶻ) 

 Colour Key: Cyan or green - classical interpretation; Green - classical valid argument; 

red - invalid argument in Ἄἓ and differences to ἕἡ (just under the Ö  column) 

 bƻǘŜΥ ²Ŝ ŀǊŜ ŎƻƳǇŀǊƛƴƎ YƭŜŜƴŜΩǎ strong ǿƛǘƘ YƭŜŜƴŜΩǎ weak 3-valued logic! (p. 82) 

 
ͯ  0 ḳ  1  (P ḳ  R)    Ö  1 ḳ  2 

F T T T  T T T T T T T 
F T T T  T ṩ ṩ ṩ T ṩ ṩ 
F T T T  T F F F T F F 
ṩ T ṩ ṩ  T F T ṩ ṩ ṩ T 
ṩ T ṩ ṩ  T ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ T ṩ ṩ  T F F ṩ ṩ ṩ F 
T T F F  T T T T F F T 
T T F F  T ṩ ṩ ṩ F ṩ ṩ 
T T F F  T F F T F T F 
ṩ ṩ ṩ T  ṩ ṩ T ṩ T T T 
ṩ ṩ ṩ T  ṩ ṩ ṩ ṩ T ṩ ṩ 
ṩ ṩ ṩ T  ṩ ṩ F ṩ T F F 
ṩ ṩ ṩ ṩ  ṩ ṩ T ṩ ṩ ṩ T 
ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ ṩ ṩ  ṩ ṩ F ṩ ṩ ṩ F 
ṩ ṩ ṩ F  ṩ ṩ T ṩ F F T 
ṩ ṩ ṩ F  ṩ ṩ ṩ ṩ F ṩ ṩ 
ṩ ṩ ṩ F  ṩ ṩ F ṩ F T F 
T & F T  & F T T T T T 
T & F T  & ṩ ṩ ṩ T ṩ ṩ 
T & F T  & T F T T F F 
ṩ & ṩ ṩ  & F T ṩ ṩ ṩ T 
ṩ & ṩ ṩ  & ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ & ṩ ṩ  & T F ṩ ṩ ṩ F 
F & T F  & F T F F F T 
F & T F  & ṩ ṩ ṩ F ṩ ṩ 
F & T F  & T F T F T F 

 
 

Rem. 1.73 The argument ὗ ȾḈὖṓὗ which is valid in both ἕἡ and l (due to uniformity,) is not 

valid in Ἄἓ. Assuming the premise ὗ to have the value 4, then the conclusion will have 

the value ṩ if ὗ has the value 4 and ὖ has the value ṩ.   (p. 82) 
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Rem. 1.74 The classically valid argument  

ὖ 
ὖṓὗ ȾḈὗ 

 

 is however also valid in Ἄἓ.       (p. 84) 

 
.ƻŎƘǾŀǊΩǎ 9ȄǘŜǊƴŀƭ о-Valued Logic 

 
Alphabet and Formulae 

 

Defn. 1.75 !ƴ ŀƭǇƘŀōŜǘ ƻŦ .ƻŎƘǾŀǊΩǎ ŜȄternal 3-Valued Logic ἌἏ consists of 

¶ a set ὴȠ ὴȠ ὴȣ  of propositional variables 

¶ the set of standard connectives ͯ  ρȠ Ɇ ςȠ Ö ςȠ ṓ ςȠ ḳ ς  

together with their arities 

¶ tƘŜ ǎǇŜŎƛŀƭ ŎƘŀǊŀŎǘŜǊǎ άόά ŀƴŘ άύέ 

 Formulae of ἌἏ are defined as with classical propositional logic.  (p. 86) 

Rem. 1.76 Fronhöfer uses /ƻǇƛΩǎ symbol ŦƻǊ ΨƴƻǘΩ ƛΦŜΦ ͯ  ǘƻ ŘŜƴƻǘŜ ƴŜƎŀǘƛƻƴ ƛƴ .ƻŎƘǾŀǊΩǎ 9ȄǘŜǊƴŀƭ 

System ōŜŎŀǳǎŜ ƛǘ Ǉƭŀȅǎ ŀ ǎǇŜŎƛŀƭ ǊƻƭŜΦ {ƛƴŎŜ ǿŜ ŀǊŜ ŀƭǊŜŀŘȅ ǳǎƛƴƎ /ƻǇƛΩǎ ƴƻǘŀǘƛƻƴ ǿŜ 

shall use ͯ  for this purpose, consistent with the rest of the text. 

Defn. 1.77 Truth Functions of ἌἏ using ὺȟύ       (p. 86) 

             ὺɆᶻ ύ             ὺ Öᶻ ύ 

ὺ ͯᶻὺ  ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

   T F     T T F F     T T T T 
ṩ T  ṩ F F F  ṩ T F F 

   F T     F F F F     F T F F 
 

 

            ὺṓᶻ ύ             ὺḳᶻ ύ 

ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

   T T F F     T T F F 

ṩ T T T  ṩ F T T 

   F T T T     F F T T 

 
 

Normality, Uniformity and Regularity 

Rem. 1.78 We observe that, 

¶ All standard connectives of ἌἏ are normal. 

¶ None of the standard connectives of ἌἏ is regular. (Obvious infractions are marked 

as red in the tables above) 
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¶ All standard connectives of ἌἏ are uniform (blue entries). 

Rem. 1.79 All connectives in ἌἏ treat the truth-value ṩ as if it were false.  (p. 88) 

Rem. 1.80 Good suggestive readings of ͯ  F are: 

¶ F is not true 

¶ It is not the case that F 

¶ F is true doses not obtain      (p. 88) 

E.g. 1.81 Consider again the statements ὖ Ö ͯὖ; ὖṓ ὖṓὗ  and ὖɆὗ ṓ ὖ Ö ὗ   as in 

previous examples, this time in ἌἏ. 

 
P Ö  ͯ  P  P ṓ  (P ṓ  Q)  (P Ɇ  Q) ṓ  (P Ö   Q) 

T T F T  T T T T T  T T T T T T T 
ṩ T T ṩ  T F T F ṩ  T F ṩ T T T ṩ 
F T T F  T F T F F  T F F T T T F 
     ṩ T ṩ T T  ṩ F T T ṩ T T 
     ṩ T ṩ T ṩ  ṩ F ṩ T ṩ F ṩ 
     ṩ T ṩ T F  ṩ F F T ṩ F F 
     F T F T T  F F T T F T T 
     F T F T ṩ  F F ṩ T F F ṩ 
     F T F T F  F F F T F F F 

 
 Note that the classical tautologies ὖ Ö ͯὖ and ὖɆὗ ṓ ὖ Ö ὗ  remain tautologies in 

ἌἏ.         (p. 88) 

 

Lemma 1.82 The set of tautologies in ἌἏ is exactly the set of tautologies in classical logic, and the set 

of contradictions in ἌἏ is exactly the set of contradictions in classical logic. (p. 90) 

 Proof: Since ἌἏ is normal, it follows from the Normality Lemma 1.40 that that every 

formula that is a tautology in ἌἏ is a classical tautology, and similarly for contradictions. 

 Conversely, if F is a classical tautology then F is a compound formula. Since the 

connectives in ἌἏ treat their components with the truth-value ṩ as if they were false, 

ἌἏ treats the atomic components of any compound formula on an interpretation where 

they are ṩ as if they were false. (cf. Rem. 1.79) Consequently, ἌἏ assigns the same 

truth-value to the formula that classical logic would in that case. Therefore F must be a 

tautology in ἌἏ as well. 

 Similar reasoning applies to contradictions.     (p. 90) 

 

Lemma 1.83 For every formula F in ἌἏ it holds that: If Ṻ  F then Ṻ F. 

 Proof: This follows from the Normality Lemma 1.40 since ἌἏ is normal. (p. 90) 
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Lemma 1.84 For every formula F in ἌἏ it holds that: If Ṻ F then Ṻ  F. 

 Proof: This can be shown by contraposition. First we show that if an entailment does 

not hold in ἌἏ, then it does not hold in classical logic either. So, consider a set  and a 

formula F such that ẁ  F. Then there is some 3-valued assignment ἓ on which all the 

formulae in  have the truth-value 4, but on which F has the truth-value & or ṩ. We can 

convert ἓ to a classical truth-value assignment ἔ by keeping the 4 and & assignments to 

atomic formulae and switching any ṩ assignments to atomic formulae to & 

assignments. The resultant classical truth-value assignment ἔ will make formulae in   

true in classical logic. This is so because compound formulae in  behave in ἌἏ as if their 

ṩ-valued atomic components have the value &, and if any of the formulae in  are 

atomic, then since it has the value 4 on the original ἌἏ assignment ἓ it will have the 

value 4 on the classical truth-value assignment ἔ as well. But F has the value & on the 

classical truth-value assignment ἔ for similar reasons.   (p. 92) 

 Again we can use the argument ͯὖḳὗ   /ḈὖḳὙ Ö ὗḳὙ and this time assign 

truth-values on ἌἏ according to the following truth-table.  

ͯ  0 ḳ  1 ḳ (P ḳ  R)    Ö  1 ḳ  2 

F T T T F T T T T T T T 
F T T T T T F ṩ F T F ṩ 
F T T T T T F F F T F F 
T T F ṩ T T T T T ṩ F T 
T T F ṩ T T F ṩ T ṩ T ṩ 
T T F ṩ T T F F T ṩ T F 
T T F F T T T T T F F T 
T T F F T T F ṩ T F T ṩ 
T T F F T T F F T F T F 
T ṩ F T T ṩ F T T T T T 
T ṩ F T T ṩ T ṩ T T F ṩ 
T ṩ F T T ṩ T F T T F F 
F ṩ T ṩ T ṩ F T F ṩ F T 
F ṩ T ṩ F ṩ T ṩ T ṩ T ṩ 
F ṩ T ṩ F ṩ T F T ṩ T F 
F ṩ T F T ṩ F T F F F T 
F ṩ T F F ṩ T ṩ T F T ṩ 
F ṩ T F F ṩ T F T F T F 
T & F T T & F T T T T T 
T & F T T & T ṩ T T F ṩ 
T & F T T & T F T T F F 
F & T ṩ T & F T F ṩ F T 
F & T ṩ F & T ṩ T ṩ T ṩ 
F & T ṩ F & T F T ṩ T F 
F & T F T & F T F F F T 
F & T F F & T ṩ T F T ṩ 
F & T F F & T F T F T F 

  

 Colour Key: CL green, ἌἏ cyan. Note the Classical valid argument (which had failed in 

ἕἡ, l and Ἄἓ).        (p. 92) 
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.ƻŎƘǾŀǊΩǎ Assertion Operator 

Defn. 1.85 Bochvar combined both the internal and external connectives within a single system. In 

that system the external connectives were defined connectives, using the internal 

connectives and a special external assertion operator, Ἡ, defined according to the 

following truth table: 

ὺ Ἡᶻὺ 
T T 
 ṩ F 
F F 

 
 The intuitive meaning of Ἡὖ is that ὖ is true. According to the following interpretation: 
  

P Ἡ0 

T  T     0 is true holds 

 ṩ  F     0 is true does not hold 

F  F     0 is true does not hold 
           (p. 94) 

 
 

Lemma 1.86 The external version  of any ὲ-ŀǊȅ ŎƻƴƴŜŎǘƛǾŜ ֙ may be defined by applying the 

respective internal version  of the connective to externally asserted formulae: 

  &Ƞȣ &    :=   Ἡ&Ƞȣ Ἡ&  

 Thus, both the internal and the external connectives can be defined in terms of ͯ  , Ɇ  

and Ἡ. E.g. we may apply the internal ͯ  to Ἡὖ we get the following table for external 

negation. 

0 ͯ  Ἡ0 ḳ ͯ  

T F T T F 
 ṩ T F T T 
F T F T T 

            (p. 94) 

 Similarly if we apply the binary connectives to Ἡὖ and Ἡὗ we get the following tables, 

over page, for the respective external binary connectives.   (P. 96) 
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Ἡ 0 Ɇ  Ἡ 1 ḳ 0 Ɇ  1 

T T T T T T T T T 
T T F F ṩ T T F ṩ 
T T F F F T T F F 
F ṩ F T T T ṩ F T 
F ṩ F F ṩ T ṩ F ṩ 
F ṩ F F F T ṩ F F 
F F F T T T F F T 
F F F F ṩ T F F ṩ 
F F F F F T F F F 

 

Ἡ 0 Ö  Ἡ 1 ḳ 0 Ö  1 

T T T T T T T T T 
T T T F ṩ T T T ṩ 
T T T F F T T T F 
F ṩ T T T T ṩ T T 
F ṩ F F ṩ T ṩ F ṩ 
F ṩ F F F T ṩ F F 
F F T T T T F T T 
F F F F ṩ T F F ṩ 
F F F F F T F F F 

 

Ἡ 0 ṓ  Ἡ 1 ḳ 0 ṓ  1 

T T T T T T T T T 
T T F F ṩ T T F ṩ 
T T F F F T T F F 
F ṩ T T T T ṩ T T 
F ṩ T F ṩ T ṩ T ṩ 
F ṩ T F F T ṩ T F 
F F T T T T F T T 
F F T F ṩ T F T ṩ 
F F T F F T F T F 

 

Ἡ 0 ḳ  Ἡ 1 ḳ 0 ḳ  1 

T T T T T T T T T 
T T F F ṩ T T F ṩ 
T T F F F T T F F 
F ṩ F T T T ṩ F T 
F ṩ T F ṩ T ṩ T ṩ 
F ṩ T F F T ṩ T F 
F F F T T T F F T 
F F T F ṩ T F T ṩ 
F F T F F T F T F 
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Defn. 1.87 The external assertion operator can be defined as follows: 0 := ͯ ͯ 0. Compare, 

Ἡ0 ḳ ͯ  ͯ  0  Ἡ0 ḳ  ͯ ͯ  0 

T T T F  T  T T T F  T 
F T F T ṩ  F T F T ṩ 
F T F T  F  F T F T  F 

 

Rem. 1.88 Note that ͯ  is not involutive (an operation which, when applied to itself returns the 

same value.) The magenta row highlights the particular case.  (p. 96) 

0 ḳ ͯ  ͯ  0 

T T T F T 
ṩ F F T ṩ 
F T F T F 

 
 

Definability & Complete Set of Connectives 

Def. 2.1 For an arbitrary propositional logic ︡  with a set ὴȠ ὴȠ ὴȣ  of propositional 

variables: 

An ὲ-ŀǊȅ ŎƻƴƴŜŎǘƛǾŜ ֙ ƛǎ ŘŜŦƛƴŀōƭŜ ōȅ ŀ ǎŜǘ  ּר ȠȣȠ  of connectives, iff there 

exists a formula F in which there occur 

¶ at most connectives from ּר and 

¶ at most propositional variables ὴ to ὴ 

such that ֙  ὴȠȣȠ ὴ ḳ F obtains. 

A set ּר ȠȣȠ  of connectives is complete iff every connective is definable by ּר. 

Rem. 2.2 A many-valued logic is basically given by its set of connectives ς usually the standard 

ones plus sometimes additional ones. We say that a connective ֙ is definable in a logic 

 ︡iff  ֙is definable by the set of connectives of ︡ .    (p. 100) 

 

Lemma 2.3 The binary connectives of ἕἡ, l and ἌἏ are not definable in Ἄἓ. 

 Proof: Because Ἄἓ is contagious, none of its connectives produces a formula with a 

classical truth-value when any of its intermediate components have the value ṩ. 

However the binary connectives of the other three systems can produce such formulae; 

therefore none of these connectives can be defined using only the connectives of Ἄἓ. 

Lemma 2.4 None of the connectives of ἕἡ, l and Ἄἓ are definable in ἌἏ. 

 Proof: Because all connectives in ἌἏ treat the truth-value ṩ as if it were false, the 

system never produces formulae with the value ṩ. However the binary connectives of 

the other three systems can produce such formulae, therefore they are definable in ἌἏ. 

          (p. 102) 
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Lemma 2.5 All of the connectives of Ἄἓare definable in both ἕἡ and l. 

 Proof: Negation in Ἄἓ is identical; to negation in ἕἡ and l. Therefore we can define the 

conjunction Ɇ  using conjunction, disjunction and negation of l (which are identical to 

those of ἕἡ) as follows: 

   ὖɆ ὗ := ὖɆὗ Ö ὖ Ɇ ͯὖ Ö ὗ Ɇ ͯὗ  

 We can define the other connectives of Ἄἓ in terms of ͯ  and Ɇ  using standard 

classical equivalences. Alternatively, we give direct definitions for Ö   and ṓ  

analogous to the definition for Ɇ  above. Thus, 

  ὖ Ö  ὗ := ὖ Ö ὗ Ɇ ὖ Ö ͯὖ Ɇὗ Ö ͯὗ  

  ὖṓ ὗ := ὖͯ Ö ὗ Ɇ ὖ Ö ͯὖɆὗ Ö ͯὗ  

 We can verify these by means of truth tables.    (p. 102) 

 
0 Ɇ  1 ḳ 0 ω 1 Ö 0 ω  ͯ 0 Ö 1 ω  ͯ 1  

T T T T T T T T T F F T F T F F  T 
T ṩ ṩ T T ṩ ṩ ṩ T F F T ṩ ṩ ṩ ṩ ṩ 
T F F T T F F F T F F T F F F T  F 
ṩ ṩ T T ṩ ṩ T ṩ ṩ ṩ ṩ ṩ ṩ T F F  T 
ṩ ṩ ṩ T ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ F T ṩ F F ṩ ṩ ṩ ṩ ṩ ṩ F F T  F 
F F T T F F T F F F T F F T F F  T 
F ṩ ṩ T F F ṩ ṩ F F T F ṩ ṩ ṩ ṩ ṩ 
F F F T F F F F F F T F F F F T  F 

 

 
0 Ö  1 ḳ 0 Ö 1 ω 0 Ö  ͯ 0 ω 1 Ö  ͯ 1  

T T T T T T T T T T F T T T T F T 
T ṩ ṩ T T T ṩ ṩ T T F T ṩ ṩ ṩ ṩ   ṩ 
T T F T T T F T T T F T T F T T F 
ṩ ṩ T T ṩ T T ṩ ṩ ṩ ṩ ṩ ṩ T T F T 
ṩ ṩ ṩ T ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ   ṩ 
ṩ ṩ F T ṩ ṩ F ṩ ṩ ṩ ṩ ṩ ṩ F T T F 
F T T T F T T T F T T F T T T F T 
F ṩ ṩ T F ṩ ṩ ṩ F T T F ṩ ṩ ṩ ṩ   ṩ 
F F F T F F F F F T T F T F T T F 
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0 ṓ  1 ḳ  ͯ 0 Ö 1 Ɇ 0 Ö  ͯ 0 Ɇ 1 Ö  ͯ 1  
T T T T F T T T T T T F T T T T F T 
T ṩ ṩ T F T ṩ ṩ ṩ T T F T ṩ ṩ ṩ ṩ ṩ 
T F F T F T F F F T T F T T F T T F 
ṩ ṩ T T ṩ ṩ T T ṩ ṩ ṩ ṩ ṩ ṩ T T F T 
ṩ ṩ ṩ T ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ F T ṩ ṩ ṩ F ṩ ṩ ṩ ṩ ṩ ṩ F T T F 
F T T T T F T T T F T T F T T T F T 
F ṩ ṩ T T F T ṩ ṩ F T T F ṩ ṩ ṩ ṩ ṩ 
F T F T T F T F T F T T F T F T T F 

 
 

Lemma 2.6 The l conditional ṓ is not definable in ἕἡ. 

 Proof: In l, ὖṓὗ is has the value T  when both ὖ and ὗ have the value ṩ. But every 

connective of ἕἡ produces a formula with the value ṩ when its immediate components 

(all) have the value ṩ. Therefore no combination of connectives of ἕἡ can result in a 

formula that expresses the l conditional.   (p. 106) 

Lemma 2.7 The connectives of ἌἏ are not definable in ἕἡ. 

 Proof: No connective of ἕἡ produces a formula that has a classical truth-valve when its 

immediate components have the value ṩ. Therefore, no connective of ἌἏ can be 

defined using connectives of ἕἡ alone.     (p. 106)  

Lemma 2.8 Every connective of ἕἡ is definable in l. 

 Proof: Negation, conjunction and disjunction in ἕἡ are identical to those of l. The 

conditional and biconditional of ἕἡ can be defined in terms of just these connectives. 

Lemma 2.9 Every connective of ἌἏ is definable in l. 

 Proof: It can be shown that .ƻŎƘǾŀǊΩǎ ŜȄǘŜǊƴŀƭ ŀǎǎŜǊǘƛƻƴ ƛǎ ŘŜŦƛƴŀōƭŜ ƛƴ l. The 

equivalence  Ἡὖḳͯὖṓ Ḑὖ produces the following truth table for external 

assertion. 

0 Ἡ0  ͯ 0 ṓ Ḑ 0 
T T T T F F T 
ṩ F F ṩ T ṩ ṩ 
F F F F T T F 

 

 Now, all connectives of ἌἏ are definable in l, since 

¶ all of the other external Bochvar connectives can be defined using the external 

assertion operator Ἡ ŀƴŘ .ƻŎƘǾŀǊΩǎ ƛƴǘŜǊƴŀƭ ŎƻƴƴŜŎǘƛǾŜǎΣ ŀƴŘ 

¶ ŀƭƭ ƻŦ .ƻŎƘǾŀǊΩǎ ƛƴǘŜǊƴŀƭ ŎƻƴƴŜŎǘƛǾŜǎ ŀǊŜ ŘŜŦƛƴŀōƭŜ ƛƴ l (See Lemma 2.5) 

         (p.108) 

 



32 
 

 © philosophy.org.za  
 

Overview of Non-_ǳƪŀǎƛŜǿƛŎȊ /ƻƴƴŜŎǘƛǾŜǎ 

ͯὖḳ ὖͯ (identical truth function) 

Ɇὖḳ Ɇὖ (identical truth function) 

ÖὖḳÖὖ (identical truth function) 

ὖ ṓ  ὗḳ ὖͯ  Ö  ὗ     ḳͯὖ  Ö ὗ  

ὖ ḳ  ὗḳ ὖͯ Ö ὗ Ɇ ὗͯ Ö ὖ    ḳ ὖ ṓ ὗ Ɇ ὗ ṓ  ὖ  

Ἡὖ ḳͯὖṓ ὖͯ 

ͯ ὖ ḳ ͯὖ (identical truth function) 

ὖ Ö  ὗ ḳ ὖ Ö ὗ Ɇ ὖ Ö ͯὖ Ɇὗ Ö ͯὗ  

ὖɆ  ὗḳ ὖɆὗ Ö ὖɆͯ ὖ Ö ὗɆͯ ὗ   ḳͯ ͯ ὖ Ɇ  ͯ ὗ  

ὖṓ  ὗ ḳ ͯ ὖ Ö ὗ Ɇ ὖ Ö ͯὖɆὗ Ö ͯὗ   ḳͯ ὖ Ɇ  ͯ ὗ  

ὖḳ  ὗ ḳ ὖṓ ὗ Ɇὗṓ ὖ   ḳὖḳ  ὗ  

ͯ ὖ ḳ Ἡͯὖ ḳ ͯͯὖṓ ὖͯ ḳ ὖṓ ὖͯ 

ὖ Ö  ὗḳ Ἡὖ Ö  Ἡὗ ḳͯὖṓ ὖͯ ÖḐ ὗṓ ὗͯ  

ὖɆ ὗ ḳἩὖɆ  Ἡὗ ḳͯὖṓ ὖͯ Ɇ ͯ ὗṓ ὗͯ  

ὖṓ ὗ ḳ Ἡὖṓ  Ἡὗ ḳͯ ὖ Ö Ἡὗ ḳ ὖṓ ὖͯ Ö ͯ ὗṓ ὗͯ  

ὖ ḳ ὗ ḳ Ἡὖḳ  Ἡὗ        (p. 108) 

 

 

 

 

 

 

 

 

 

 

 



33 
 

 © philosophy.org.za  
 

Defining bƻǊƳŀƭ /ƻƴƴŜŎǘƛǾŜǎ ǿƛǘƘ _ǳƪŀǎƛŜǿƛŎȊ о-valued Logic 

Complete Sets of Connectives 

Rem. 2.10 Fronhöfer has shown that l is powerful enough to define all the connectives of ἕἡ, Ἄἓ 

and ἌἏ. He asks whether are all possible 3-valued connectives are definable in l. If 

they are, then the standard / primitive connectives of l represent a complete set of 

connectives. Recall that for classical logic there are complete sets of connectives e.g. ṓ

Ƞ Ḑ , ÖȠ ḐΣ Χ 

E.g. 2.11 Is the connective Π with the truth function Πᶻ definable in l? 

    ὺ Πᶻύ 

ὺ͵ύ T ṩ F  

T T ṩ T  

ṩ T ṩ ṩ  

F F ṩ F  

 
Classical Case 

 Which formula defines the classical connective Π obtained by restriction to ר ? 

  

P Q P # Q 
T T T 
T F T 
F T F 
F F F 

  

 The formula ὖɆὗ Ö ὖɆͯ ὗ  will work. 

 Procedure: We can build a suitable full conjunction for every row which results in a 4, 

   then we combine the former disjunctively. 

 Remark:  ¢Ƙƛǎ ǇǊƻŎŜŘǳǊŜ ŘƻŜǎƴΩǘ ŀƭǿŀȅǎ yield the simplest definition!  

          (p. 110 - 112) 
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Definability of Normal Connectives 

Lemma 2.12 All normal 3-valued truth-functions are definable in l. 

 Proof: A normal 3-valued ὲ-ary truth-function Ὢ can be described by the truth-table for 

a formula with a corresponding ὲ-ary connective @, i.e. ͽᶻ Ὢ. 

 
0 0 Χ 0 ͽ0ȠȣȠ 0   

T T ȣ T ὺ 
T T ȣ ṩ ὺ 
  ể  ể 
F F ȣ F ὺ  

  

¶ where each ὺȠ ὺȠȣὺ  is one of the values 4, ṩ or & and 

¶ where ὺ is 4 or & if all of the values to the left of the vertical bar in row Ὥ are 

classical truth-values.      (p. 112) 

 Firstly, for each row Ὥ of the of the truth-ŦǳƴŎǘƛƻƴΩǎ ǘǊǳǘƘ ǘŀōƭŜ ǘƘŀǘ Ƙŀǎ ŀ ὺ 4, we 

provide a formula ὗ that has the value 4 in that row and & in all the other rows. 

We use the connective Ἡ which is definable in l as Ἡὖḳͯὖṓ Ḑὖ. 

Now, for each such row of the table, we define ὗ as ὗ Ɇὗ Ɇȣ Ɇὗ  where 

ὗ

Ἡὖ      ÉÆ ÔÈÅ ÖÁÌÕÅ ÏÆ ὖ ÉÓ 4 ÉÎ ÒÏ× Ὥ      

ἩḐὖ          ÔÈÅ ÖÁÌÕÅ ÏÆ 0 ÉÓ & ÉÎ ÒÏ× Ὥ 

ἩḐὖɆ ḐἩḐὖ       ÏÔÈÅÒ×ÉÓÅ               
 

Each of the formulae 1  defined for a particular row Ὥ will have the value 

¶ 4 when 0 has the value it has in row Ὥ, and 

¶ & otherwise. 

This can be seen in the following truth-tables for ὗ : 

0 Ἡ 0  0 Ἡ  ͯ 0  0  ͯ Ἡ 0 Ɇ  ͯ Ἡ  ͯ 0 

T T T  T F F T  T F T T F T F F T 
ṩ F ṩ  ṩ F ṩ ṩ  ṩ T F ṩ T T F ṩ ṩ 
F F F  F T T F  F T F F F F T T F 

 

These truth-tables show that ὗ  is 4 iff ὖ is 4, & or ṩ as the case may be or & in all 

other cases (highlighted in magenta). Therefore the conjunction ὗ will have the value 

4 in row Ὥ for which it is defined, but false in every other row, since it will have at least 

one conjunct with the value &.      (p. 114) 
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Example For ὲ τ arguments follows: 

 

0 0 0 0 ͽ0ȠȣȠ 0   Ἡ0 

ể ể ể ể ể  Å Ἡ0 
T T F ṩ 4  ω ἩḐ0 
ể ể ể ể ể  ω ḐἩ0 ω ḐἩḐ0 

 

 Next we provide a formula 1 for each row Ὥ of the truth-ŦǳƴŎǘƛƻƴΩǎ ǘǊǳǘƘ-table that has 

the value ὺ  ṩ in that row and & in all the other rows. For each such row Ὥ, we define  

1 as 1 Ɇ1 Ɇȣ Ɇ1  where 

1

Ἡ0      ÉÆ ÔÈÅ ÖÁÌÕÅ ÏÆ 0 ÉÓ 4 ÉÎ ÒÏ× Ὥ ÁÓ ÁÂÏÖÅ       

ἩḐ0          ÔÈÅ ÖÁÌÕÅ ÏÆ 0 ÉÓ & ÉÎ ÒÏ× Ὥ ÁÓ ÁÂÏÖÅ

0 Ɇ Ḑ0     ÏÔÈÅÒ×ÉÓÅ                                                       

 

Now we can construct the following truth-tables for 1 : 

 0 Ἡ  0   0 Ἡ  ͯ  0   0  0 Ɇ  ͯ  0 

T T T  T & & T  T T & & T 
ṩ & ṩ  ṩ & ṩ ṩ  ṩ ṩ ṩ ṩ ṩ 
& & &  & T  T &  & & & T & 

 

 Again highlighted in magenta, these truth-tables show that ὗ  is 4 iff ὖ is 4 or & as the 

case may be, or that ὗ  is ṩ iff ὖ is ṩ, or that ὗ  is & in all other cases. 

 Because the truth-function Ὢ is normal, at least one ὖ must have the value ṩ in a row Ὥ 

with ὺ  ṩ. In that case ὗ has the value ṩ in row Ὥ and & in all others. 

 Finally, we form a disjunction of the formulae ὗ for each row Ὥ with  ὺ 4 or ὺ  ṩ.  

This disjunction expresses the function defined in the truth-table schema: It will have 

the value ὺ for each row Ὥ with  ὺ 4 or ὺ  ṩ and & for all the other rows, which is 

the desired result. 

 There remains one special case where the truth function Ὢ produces a & in every row. 

Such a function can be defined in l using the conjunction 

ἩὖɆͯ ἩὖɆὖɆȣ Ɇὖ  

 since this always has the value &.     (p. 114 - 116) 
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E.g. 2.13 Construct a formula corresponding to the connective given by the following truth table: 

0 1 0Π1   
T T T  ἩὖɆἩὗ 
T ṩ ṩ  ἩὖɆὗɆͯ ὗ  
T F T  ἩὖɆἩͯ ὗ 
ṩ T T  ἩͯὖɆͯ Ἡͯ ὖ ɆἩὗ 
ṩ ṩ ṩ  ὖɆͯ ὖɆὗɆͯ ὗ  
ṩ F ṩ  ὖɆͯ ὖɆἩͯ ὗ 
F T F   
F ṩ ṩ  Ἡͯ ὖɆὗɆͯ ὗ  
F F F   

  

 Above right Fronhöfer has provided a suitable full conjunction for every row which 

results in a 4 or a ṩ. Normally we would combine the former disjunctively to form a 

truth-table, however such a truth-table is too large to fit on one page. Therefore we 

have constructed separate truth-tables for each conjunct with the main connective 

highlighted in magenta. 

                         

Ἡ P Ɇ a 1  Ἡ P Ɇ 1 Ɇ Ḑ 1 
T T T T T  T T F T F F T 
T T F F ṩ  T T ṩ ṩ ṩ ṩ ṩ 
T T F F F  T T F F F T F 
F ṩ F T T  F ṩ F T F F T 
F ṩ F F ṩ  F ṩ F ṩ ṩ ṩ ṩ 
F ṩ F F F  F ṩ F F F T F 
F F F T T  F F F T F F T 
F F F F ṩ  F F F ṩ ṩ ṩ ṩ 
F F F F F  F F F F F T F 

 

                            

Ἡ P Ɇ Ἡ Ḑ 1  Ḑ Ἡ P Ɇ Ḑ Ἡ Ḑ 0 Ɇ a Q 
T T F F F T  F T T F T F F T F T T 
T T F F ṩ ṩ  F T T F T F F T F F ṩ 
T T T T T F  F T T F T F F T F F F 
F ṩ F F F T  T F ṩ T T F ṩ ṩ T T T 
F ṩ F F ṩ ṩ  T F ṩ T T F ṩ ṩ F F ṩ 
F ṩ F T T F  T F ṩ T T F ṩ ṩ F F F 
F F F F F T  T F F F F T T F F T T 
F F F F ṩ ṩ  T F F F F T T F F F ṩ 
F F F T T F  T F F F F T T F F F F 
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0 Ɇ  ͯ 0 Ɇ 1 Ɇ  ͯ 1  0 Ɇ  ͯ 0 Ɇ Ἡ Ḑ 1 

T F F T F T F F T  T F F T F F F T 
T F F T F ṩ ṩ ṩ ṩ  T F F T F F ṩ ṩ 
T F F T F F F T F  T F F T F T T F 
ṩ ṩ ṩ ṩ F T F F T  ṩ ṩ ṩ ṩ F F F T 
ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ F F ṩ ṩ 
ṩ ṩ ṩ ṩ F F F T F  ṩ ṩ ṩ ṩ ṩ T T F 
F F T F F T F F T  F F T F F F F T 
F F T F F ṩ ṩ ṩ ṩ  F F T F F F ṩ ṩ 
F F T F F F F T F  F F T F F T T F 

 

                    

Ἡ  ͯ 0 Ɇ 1 Ɇ  ͯ 1 
F F T F T F F T 
F F T F ṩ ṩ ṩ ṩ 
F F T F F F T F 
F ṩ ṩ F T F F T 
F ṩ ṩ F ṩ ṩ ṩ ṩ 
F ṩ ṩ F F F T F 
T T F F T F F T 
T T F ṩ ṩ ṩ ṩ ṩ 
T T F F F F T F 

 

 Now we disjunctively combine all the truth values under the main conjuncts in the truth 

tables above, filling in the truth-values from right to left, thus: 

 v  v  v  v  v  v  
T T F F F F F F F F F F F 
T ṩ ṩ ṩ F F F F F F F F F 
T T F T T T F F F F F F F 
F T F T F T T T F F F F F 
F ṩ F ṩ F ṩ F ṩ ṩ ṩ F F F 
F ṩ F ṩ F ṩ F ṩ F ṩ ṩ ṩ F 
F F F F F F F F F F F F F 
F ṩ F ṩ F ṩ F ṩ F ṩ F ṩ ṩ 
F F F F F F F F F F F F F 

 

 Although Fronhöfer filled in his table in slightly different order, the truth-values match 

under the all-important main connective - the leftmost disjunct above.  (p. 118) 

Thrm. 2.14 No non-normal connective is definable in l (with the standard connectives). Hence, the 

standard set of connectives of l is not complete. 

 Proof: A connectives of l are normal, therefore it is not possible to produce a formula 

that has the value ṩ when all of its constituents have only 4s and &s. 
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Rem. 2.15 ²Ŝ ŘƻƴΩǘ ŎƻƴǎƛŘŜǊ ƛǘ ŀ ŘŜŦŜŎǘ ǘƘŀǘ non-normal truth-functions cannot be defined in l 

because it is hard to imagine a situation in which a connective would produce a non-

classical value based on classical value constituents alone.   (p. 120) 

 
Defining Non-Normal Connectives 

The Tertium operator  

 0 ╣0 
 T ṩ 
ṩ ṩ 
 F ṩ 

 
According to {ƱǳǇŜŎƪƛΩǎ ¢ƘŜƻǊŜƳ, extending the standard connectives of l by the ╣ connective 

results in a complete set of connectives. ό{ƱǳǇŜŎƪƛΣ мфосύ    (p. 122) 

Defn. 2.16 Using the ╣ connective allows us to define a neutral truth constant, thus 

  n ╣ὴ 

 We may also define the truth constants t and f as follows: 

  t ὴṓὴ 

  f ͯὴṓὴ  

Rem. 2.17 Def. 2.16 implies that for all interpretations ἓ, the following obtain: 

  ἶἓ  ṩ 

  Ἴἓ 4 

  Ἦἓ &         (p. 124) 

Lemma 2.18 The standard connectives of l Ǉƭǳǎ ǘƘŜ {ƱǳǇŜŎƪƛ ƻǇŜǊŀǘƻǊ ╣ constitute a complete set 

of 3-valued connectives. 

 Proof: For any ὲ-ary connective  of 3-valued logic, we can show that there is a formula 

G with at most propositional variables ὴȠȣȠὴ ǎǳŎƘ ǘƘŀǘ ֙ ὴȠȣȠὴ ḳ G. 

 Note: By replacing all occurrences of ὴ in G by t, n or f we obtain the formulae ἑ , ἑṩ 

and ἑ  respectively, which define the (ὲ-1)-ary connectives ,  ṩ and  respectively. 

 We proceed by mathematical induction on ὲ: 

 For ὲ = 0Σ ֙ ƛǎ ƛŘŜƴǘƛŎŀƭ ǘƻ ƻƴŜ ƻŦ ǘƘŜ ǘǊǳǘƘ ŎƻƴǎǘŀƴǘǎΦ For any ὲ-ary connective  we may 

assume that there are three formulae ἑ , ἑṩ and ἑ  which define the (ὲ-1)-ary 

connectives ,  ṩ and  respectively, such that: 

  ἑ ḳ ὴȠȣȠὴ   ΥҐ  ֙ ὴȠȣȠὴ Ƞ Ἦ 
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  ἑṩ ḳ ṩ ὴȠȣȠὴ  ΥҐ  ֙ ὴȠȣȠὴ Ƞ ἶ 

  ἑ ḳ ὴȠȣȠὴ   ΥҐ  ֙ ὴȠȣȠὴ Ƞ Ἴ    (p. 124) 

 Next we define the following auxiliary formulae: 

  Ἃ    := Ἡὴ 

  Ἃ    := Ἡͯ ὴ 

  Ἃṩ := ͯ ὴ Ɇͯ ὴͯ 

 These are interpreted according to the following table: 

  

 

  

 For Ἃ , Ἃṩ and Ἃ  we obtain the following truth tables: 

  Ἃ :    

 

   

  Ἃṩ: 

F ͯ  F Ɇ ͯ   ͯ F 
T F T F T  F T 
ṩ T ṩ T T ṩ ṩ 
F T F F F  T F 

 
  Ἃ : 

F a  ͯ F 
T F F T 
ṩ F ṩ ṩ 
F T T F 

 
 Now we define G := ἑ ɆἋ  Ö ἑṩɆἋṩ  Ö ἑ ɆἋ   

 Consider the first disjunct ἑ ɆἋ ḳ ὴȠȣȠὴ Ƞ ἮɆἋ . If ὴ is false, then either 

Ἃ  is true and ֙  ὴȠȣȠὴ Ƞ Ἦ is ֙  ὴȠȣȠὴ Ƞ ὴ  or Ἃ  is false and the value of G 

is determined by the other two disjuncts which may be analysed analogously. 

 Therefore we obtain ἑḳ ὴȠȣȠὴ .     (p. 126) 

 

 

 

ὴ Ἃ  Ἃṩ Ἃ  

T T F F 
ṩ F T F 
F F F T 

F a F 
T T T 
ṩ F ṩ 
F F F 
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E.g. 2.19 Given the non-normal unary connective ẅ defined by 

   

 

  
 we derive the 0-ŀǊȅ άŎƻƴƴŜŎǘƛǾŜǎέ όŎƻƴǎǘŀƴǘǎύ ŀǎ 

  ἑ ḳ ẅ    := ẅἼ   ḳἶ 

  ἑṩ ḳ ẅṩ := ẅἶ  ḳἮ 

  ἑἐḳ ẅἐ   := ẅἮ   ḳἶ 

 According to the construction in the proof above, we get 

  ẅἐḳ ẅ Ɇ Ἃ  Ö ẅṩ Ɇ Ἃṩ  Ö ẅἢ Ɇ Ἃ  

          ḳ ἶɆἩἐ Ö ἮɆͯ ἐɆͯ ἐͯ Ö ἶɆἩͯ ἐ 

 We can simplify this expressing by dropping the middle conjunct, which is necessary 

false (see below), to obtain 

  ẅἐḳ ἶɆἩἐ  Ö ἶɆἩͯ ἐ 

 which by distribution of ω and Ö  yields 

  ẅἐḳἶɆἩἐ Ö Ἡͯ ἐ       (p. 128) 

 We can verify that middle conjunct is necessary false by means of a truth-table. 

Ἦ Ɇ ἌͯἏ ἐ Ɇ ͯ   ͯ ἐ  
F F F  T F T F T 
F F T ṩ T T ṩ ṩ 
F F T  F F F T F 

 

E.g. 2.20 Given a binary connective ֙ ŘŜŦƛƴŜŘ ōȅ 

  

 

 

 we can  represent 

  ἑ ḳ Ἃ Ἴ ḳ ἋɆͯ Ἃ  (1st column) 

  ἑṩ ḳἋ ἶ ḳἶ  (2nd column) 

  ἑ ḳἋ Ἦ ḳἋɆͯ Ἃ  (3rd column) 

F ẅἐ 
T ṩ 
ṩ  F 
F ṩ 

 4 ṩ  & 
T F ṩ  F 
ṩ ṩ ṩ ṩ 
F F ṩ  F 
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 According to the construction in the proof above, we get 

  Ἃ Ἄḳ ἑ ɆἋ  Ö ἑṩɆἋṩ  Ö ἑ ɆἋ  

              ḳ ἋɆͯ ἋɆἩἌ Ö ἶɆͯ ἌɆͯ Ἄͯ Ö ἋɆͯ ἋɆἩͯ Ἄ 

 Bȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ω ŀƴŘ Ö of the first and last conjuncts, we get 

  ἋɆͯ Ἃ Ö ἩἌɆἩͯἌ 

 However ἩἌɆἩͯἌ is always false, since Ἄ and ͯ Ἄ cannot both be simultaneously true.  

 By commutation and association of ω we can rewrite the middle conjunct above as 

  ἶɆͯ Ἄ ɆἶɆͯ ἌἏͯἌ 

 Because ἶɆͯ ἌἏἜ ḳ ἶɆͯ Ἔ we can rewrite the step above as  

  ἶɆͯ Ἄ ɆἶɆͯ Ἄͯ 

 which by association and double negation becomes 

  ἶɆͯ ἌɆἌ 

 Since ͯἌɆἌ is either & or ṩ, we can simply drop the ἶ and simplify Ἃ Ἄ  to 

   Ἃ Ἄḳ ἋɆͯ Ἃ Ö ἌɆͯ Ἄ      (p. 130) 

 We can verify this by means of a truth table by filling in the truth values under  ֙

according to the given definition, thus  

Ἃ  Ἄ ḳ Ἃ Ɇ  ͯ Ἃ  Ö Ἄ Ɇ  ͯ Ἄ 
T F T T T F F T F T F F T 
T ṩ ṩ T T F F T ṩ ṩ ṩ ṩ ṩ 
T F F T T F F T F F F T F 
ṩ ṩ T T ṩ ṩ ṩ ṩ ṩ T F F T 
ṩ ṩ ṩ T ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ F T ṩ ṩ ṩ ṩ ṩ F F T F 
F F T T F F T F F T F F T 
F ṩ ṩ T F F T F ṩ ṩ ṩ ṩ ṩ 
F F F T F F T F F F F T F 

 

E.g. 2.21 Given the binary connective Ɇ  defined by 

   

 

 

 we can  represent 
 

   4 ṩ   & 
T T ṩ F 
ṩ ṩ ṩ ṩ 
F F ṩ F 



42 
 

 © philosophy.org.za  
 

  ἋɆ Ἴ ḳἋ  (1st column) 

  ἋɆ ἶ ḳἶ  (2nd column) 

  ἋɆ Ἦ ḳ ͯἋɆἋ (3rd column) 

 
 According to the construction in the proof above, we get 

  ἋɆ Ἄ ḳ ἋɆἩἌ Ö ἶɆͯ ἌɆͯ Ἄͯ Ö ͯ ἋɆἋɆἩͯ Ἄ 

 As with e.g. 2.20, we can simplify the middle conjunct to 

  ἌɆͯ Ἄ 

 which yields 

  ἋɆ Ἄ ḳ ἋɆἩἌ Ö ἌɆͯ Ἄ Ö ͯ ἋɆἋɆἩͯ Ἄ 

 This can be further simplified to 

  ἋɆ Ἄ ḳ ἋɆἌ Ö ἋɆͯ Ἃ Ö ἌɆͯ Ἄ 

 which is the formula used to define Ɇ  in lemma 2.5 above. We have already verified 

this by means of a truth table.      (p. 132) 

 
 

_ǳƪŀǎƛŜǿƛŎȊΩǎ .ƻƭŘ /ƻƴƴŜŎǘƛǾŜǎ 
 
 
Defn. 2.22 We define the following bold connectives i.e. bold conjunction and bold disjunction 

(symbolised by & and  respectively) as follows: 

  ὖ & ὗ  :=  ͯ ὖṓ Ḑὗ  

  ὖ  1  :=  ͯ ὖṓὗ 

 The bold connectives are given by the following truth-tables in l using ὺȟύ: 

 
              ὺ & ύ                        ὺ  ύ 

ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T T ṩ F  T T T T 

ṩ ṩ F F  ṩ T T ṩ 

F F F F  F T ṩ F 

 
 
 Recall that ω ŀƴŘ Ö both have the truth-value ṩ in the shaded positions above. Also 

note that the bold connectives are also known as strong conjunction/disjunction (as 

opposed to the weak connectives ω ŀƴŘ Ö.)     (p. 136) 
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Rem. 2.23 The weak connectives are so called because they do not preserve the relations of the 

excluded middle and excluded contradiction; whereas the strong connectives do 

preserve them. 

Lemma 2.24 The bold connectives can be used to express the law of the excluded middle and the law 

of non-contradiction as tautologies in l, thus 

  ὖ  ͯ ὖ      and ͯὖ & ͯ ὖ 

 Proof: 

  

 
  
 The magenta columns show that the expressions are tautologies.  (p. 136) 

Rem. 2.25 Rather than defining the bold connectives as in defn. 2.22 above, we could take them as 

primitive (together with ͯ ) and define the l conditional as 

 ὖ ṓὗ  :=  ͯ ὖ & ͯ ὗ     or     ὖ ṓὗ  :=  ͯ ὖ  ὗ 

   

 

 

 

 

 

 
Rem. 2.26 We may also define the biconditional ὖ ḳὗ using the bold conjunction of the 

conditionals ὖ ṓὗ  and ὗ ṓὖ thus, 

   ὖ ḳὗ  :=  ὖ ṓὗ  & ὗ ṓὖ 

   

 

 

 

 

 

           (p. 138) 

 ͯ 0 &  ͯ 0  0   ͯ 0 
T T F F T  T T F T 
T ṩ F ṩ ṩ  ṩ T ṩ ṩ 
T F F T F  F T T F 

P ṓ Q  ͯ (P &  ͯ Q)  ͯ P  Q 
T T T T T F F T F T T T 
T ṩ ṩ ṩ T ṩ ṩ ṩ F T ṩ ṩ 
T F F F T T T F F T F F 
ṩ T T T ṩ F F T ṩ ṩ T T 
ṩ T ṩ T ṩ F ṩ ṩ ṩ ṩ T ṩ 
ṩ ṩ F ṩ ṩ ṩ T F ṩ ṩ ṩ F 
F T T T F F F T T F T T 
F T ṩ T F F ṩ ṩ T F T ṩ 
F T F T F F T F T F T F 

(P ṓ Q) & (Q ṓ P) P ḳ ὗ 
T T T T T T T T 
T ṩ ṩ ṩ ṩ T T  ṩ 
T F F F F T T F 
ṩ T T ṩ T ṩ ṩ  ṩ 
ṩ T ṩ T ṩ T ṩ T 
ṩ ṩ F ṩ F T ṩ  ṩ 
F T T F T F F F 
F T ṩ ṩ ṩ ṩ F  ṩ 
F T F T F T F T 
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Rem. 2.27 Recall from Critical Reasoning 18 that idempotence is the property of certain operations 

when applied multiple times not to change the result beyond the initial application. Bold 

connectives are not idempotent therefore applying the same operator more than once 

can change the result. Thus, 

   

 

 

 The magenta columns show that the expressions above are not tautologies. However 

the following are tautologies as shown by the magenta columns. 

(P & P) ḳ (P & 0 & 0   (P  P) ḳ (P  (P  0  
T T T T T T T T T  T T T T T T T T T 
ṩ F ṩ T ṩ F ṩ F ṩ  ṩ T ṩ T ṩ T ṩ T ṩ 
F F F T F F F F F  F F F T F F F F F 
 
           (p. 140) 

Rem. 2.28 Note: ὖ & ὖṓὗ ṓὗ is a theorem; however  ὖ Ɇὖṓὗ ṓὗ is not a theorem 

in l as shown by the magenta columns below.  

0 & 0 ṓ 1  ṓ 1  0 ω 0 ṓ 1  ṓ 1 
T T T T T T T  T T T T T T T 
T ṩ T ṩ ṩ T ṩ  T ṩ T ṩ ṩ T ṩ 
T F T F F T F  T F T F F T F 
ṩ ṩ ṩ T T T T  ṩ ṩ ṩ T T T T 
ṩ ṩ ṩ T ṩ T ṩ  ṩ ṩ ṩ T ṩ T ṩ 
ṩ F ṩ ṩ F T F  ṩ ṩ ṩ ṩ F ṩ F 
F F F T T T T  F F F T T T T 
F F F T ṩ T ṩ  F F F T ṩ T ṩ 
F F F T F T F  F F F T F T F 

 

Exportation Rules 
 
 ὖṓ Ὑṓὗ ḳ ὖ & Ὑ ṓὗ  is a theorem; however 

ὖṓ Ὑṓὗ ṓ ὖɆὙ ṓὗ  is not a theorem. See truth tables over the next two pages where 

the magenta columns show the difference. 

 

 
 

 

 

P ḳ (P & P)  P ḳ (P  P) 
T T T T T  T T T T T 
ṩ F ṩ F ṩ  ṩ F ṩ T ṩ 
F T F F F  F T F F F 
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0 ṓ 2 ṓ 1  ḳ 0 & 2 ṓ 1 
T T T T T T T T T T T 
T T ṩ T T T T ṩ ṩ T T 
T T F T T T T F F T T 
T ṩ T ṩ ṩ T T T T ṩ ṩ 
T T ṩ T ṩ T T ṩ ṩ T ṩ 
T T F T ṩ T T F F T ṩ 
T F T F F T T T T F F 
T ṩ ṩ ṩ F T T ṩ ṩ ṩ F 
T T F T F T T F F T F 
ṩ T T T T T ṩ ṩ T T T 
ṩ T ṩ T T T ṩ F ṩ T T 
ṩ T F T T T ṩ F F T T 
ṩ T T ṩ ṩ T ṩ ṩ T T ṩ 
ṩ T ṩ T ṩ T ṩ F ṩ T ṩ 
ṩ T F T ṩ T ṩ F F T ṩ 
ṩ ṩ T F F T ṩ ṩ T ṩ F 
ṩ T ṩ ṩ F T ṩ F ṩ T F 
ṩ T F T F T ṩ F F T F 
F T T T T T F F T T T 
F T ṩ T T T F F ṩ T T 
F T F T T T F F F T T 
F T T ṩ ṩ T F F T T ṩ 
F T ṩ T ṩ T F F ṩ T ṩ 
F T F T ṩ T F F F T ṩ 
F T T F F T F F T T F 
F T ṩ ṩ F T F F ṩ T F 
F T F T F T F F F T F 

           (p. 142) 
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           (p. 142) 
 
Note however that when the direction of the major implication goes the other way i.e. ὖɆὙ ṓ

ὗ ṓ ὖṓ Ὑṓὗ  we do have a tautology. See below 

 

 

 

 

 

 

 

 

  

0 ṓ 2 ṓ 1  ṓ 0 ω 2 ṓ 1 
T T T T T T T T T T T 
T T ṩ T T T T ṩ ṩ T T 
T T F T T T T F F T T 
T ṩ T ṩ ṩ T T T T ṩ ṩ 
T T ṩ T ṩ T T ṩ ṩ T ṩ 
T T F T ṩ T T F F T ṩ 
T F T F F T T T T F F 
T ṩ ṩ ṩ F T T ṩ ṩ ṩ F 
T T F T F T T F F T F 
ṩ T T T T T ṩ ṩ T T T 
ṩ T ṩ T T T ṩ ṩ ṩ T T 
ṩ T F T T T ṩ F F T T 
ṩ T T ṩ ṩ T ṩ ṩ T T ṩ 
ṩ T ṩ T ṩ T ṩ ṩ ṩ T ṩ 
ṩ T F T ṩ T ṩ F F T ṩ 
ṩ ṩ T F F T ṩ ṩ T ṩ F 
ṩ T ṩ ṩ F ṩ ṩ ṩ ṩ ṩ F 
ṩ T F T F T ṩ F F T F 
F T T T T T F F T T T 
F T ṩ T T T F F ṩ T T 
F T F T T T F F F T T 
F T T ṩ ṩ T F F T T ṩ 
F T ṩ T ṩ T F F ṩ T ṩ 
F T F T ṩ T F F F T ṩ 
F T T F F T F F T T F 
F T ṩ ṩ F T F F ṩ T F 
F T F T F T F F F T F 
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           (P. 144) 

 

 

 

 

 

 

 

 

 

 

 

0 ω 2 ṓ 1 ṓ 0 ṓ 2 ṓ 1  
T T T T T T T T T T T 
T ṩ ṩ T T T T T ṩ T T 
T F F T T T T T F T T 
T T T ṩ ṩ T T ṩ T ṩ ṩ 
T ṩ ṩ T ṩ T T T ṩ T ṩ 
T F F T ṩ T T T F T ṩ 
T T T F F T T F T F F 
T ṩ ṩ ṩ F T T ṩ ṩ ṩ F 
T F F T F T T T F T F 
ṩ ṩ T T T T ṩ T T T T 
ṩ ṩ ṩ T T T ṩ T ṩ T T 
ṩ F F T T T ṩ T F T T 
ṩ ṩ T T ṩ T ṩ T T ṩ ṩ 
ṩ ṩ ṩ T ṩ T ṩ T ṩ T ṩ 
ṩ F F T ṩ T ṩ T F T ṩ 
ṩ ṩ T ṩ F T ṩ ṩ T F F 
ṩ ṩ ṩ ṩ F T ṩ T ṩ ṩ F 
ṩ F F T F T ṩ T F T F 
F F T T T T F T T T T 
F F ṩ T T T F T ṩ T T 
F F F T T T F T F T T 
F F T T ṩ T F T T ṩ ṩ 
F F ṩ T ṩ T F T ṩ T ṩ 
F F F T ṩ T F T F T ṩ 
F F T T F T F T T F F 
F F ṩ T F T F T ṩ ṩ F 
F F F T F T F T F T F 
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Comparing Bold and Weak Conjunction 

 
0 & 1 ṓ 0 ω 1  0 ω 1 ṓ 0 & 1 
T T T T T T T  T T T T T T T 
T ṩ ṩ T T ṩ ṩ  T ṩ ṩ T T ṩ ṩ 
T F F T T F F  T F F T T F F 
ṩ ṩ T T ṩ ṩ T  ṩ ṩ T T ṩ ṩ T 
ṩ F ṩ T ṩ ṩ ṩ  ṩ ṩ ṩ ṩ ṩ F ṩ 
ṩ F F T ṩ F F  ṩ F F T ṩ F F 
F F T T F F T  F F T T F F T 
F F ṩ T F F ṩ  F F ṩ T F F ṩ 
F F F T F F F  F F F T F F F 
               
0 Ö 1 ṓ 0   1  0   1 ṓ 0 Ö 1 
T T T T T T T  T T T T T T T 
T T ṩ T T T ṩ  T T ṩ T T T ṩ 
T T F T T T F  T T F T T T F 
ṩ T T T ṩ T T  ṩ T T T ṩ T T 
ṩ ṩ ṩ T ṩ  4 ṩ  ṩ   4 ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ F T ṩ ṩ F  ṩ ṩ F T ṩ ṩ F 
F T T T F T T  F T T T F T T 
F ṩ ṩ T F ṩ ṩ  F ṩ ṩ T F ṩ ṩ 
F F F T F F F  F F F T F F F 

 

Note that the formulae at right are not tautologies are as shown by the magenta columns. 

          (p. 144) 
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Which Classical Tautologies Obtain? 

 
Fronhöfer lists the following classical tautologies. The ones highlighted do not obtain. 

 
ὖ Ö ὗ ḳ ὗ Ö ὖ    ὖ  ὗ ḳ ὗ  ὖ 

ὖɆὗ ḳ ὗɆὖ    ὖ & ὗ ḳ ὗ & ὖ 

ὖ Ö ὗ Ö Ὑ ḳ ὖ Ö ὗ Ö Ὑ  ὖ  ὗ  Ὑ ḳ ὖ  ὗ  Ὑ 

ὖɆὗɆὙ ḳ ὖɆὗ ɆὙ  ὖ & ὗ & Ὑ ḳ ὖ & ὗ  & Ὑ 

 ὖṓ ὖ Ö ὗ     ὖṓ ὖ  ὗ  

 ὖṓ ὗṓ ὖɆὗ     ὖṓ ὗṓ ὖ & ὗ  

 ὖɆὗ ṓὖ    ὖ & ὗ ṓὖ 

 ͯὖɆὗ ḳ ὖͯ Ö ͯὗ    ͯὖ & ὗ ḳ ὖͯ  ͯὗ  

 ͯὖ & ὗ ṓ ὖͯ Ö ͯὗ    ὖͯ Ö ͯὗ ṓͯὖ & ὗ  

 ͯὖɆὗ ṓ ὖͯ  ͯὗ    ὖͯ  ͯὗ ṓ ͯ ὖɆὗ  

 ͯὖ  ὗ ṓ ὖͯɆ ͯὗ    ὖͯɆ ͯὗ ṓ ͯ ὖ  ὗ  

 ͯὖ Ö ὗ ṓ ὖͯ & ͯ ὗ    ὖͯ & ͯ ὗ ṓͯὖ Ö ὗ  

 ὖɆὗ Ö Ὑ ḳ ὖɆὗ  Ö ὖɆὙ   ὖ Ö ὗɆὙ ḳ ὖ Ö ὗ Ɇὖ Ö Ὑ  

 ὖ & ὗ  Ὑ ṓ ὖ & ὗ  ὖ & Ὑ  ὖ & ὗ  ὖ & Ὑ ṓ ὖ & ὗ  Ὑ  

 ὖ  ὗ & Ὑ ṓ ὖ  ὗ  & ὖ  Ὑ  ὖ  ὗ  & ὖ  Ὑ ṓ ὖ  ὗ & Ὑ  

 ὖɆὗ  Ὑ ṓ ὖɆὗ  ὖɆὙ  ὖɆὗ  ὖɆὙ ṓ ὖɆὗ  Ὑ  

 ὖ Ö ὗ & Ὑ ṓ ὖ Ö ὗ  & ὖ Ö Ὑ  ὖ Ö ὗ  & ὖ Ö Ὑ ṓ ὖ Ö ὗ & Ὑ  

 ὖ & ὗ Ö Ὑ ṓ ὖ & ὗ Ö ὖ & Ὑ  ὖ & ὗ Ö ὖ & Ὑ ṓ ὖ & ὗ Ö Ὑ  

 ὖ  ὗɆὙ ṓ ὖ  ὗ Ɇὖ  Ὑ  ὖ  ὗ Ɇὖ  Ὑ ṓ ὖ  ὗɆὙ  

 ὖɆὗ  Ö ὖ ḳὖ    ὖ Ö ὗ Ɇὖ ḳὖ 

 0 & 1  0ṓ0    0  1 & 0ṓ0 

 ὖṓ ὖ & ὗ  ὖ    ὖṓ ὖ  ὗ  & ὖ 

 ὖṓὗ ɆὗṓὙ ṓ ὖṓὙ  ὖṓὗ  & ὗṓὙ ṓ ὖṓὙ 

           (p. 146) 
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Proof: Fronhöfer provides proof that the highlighted statements are not tautologies by means of full 

truth-tables, however the process is very laborious and time consuming. Instead we shall use the 

shorter truth table technique learned in Critical Reasoning 09 to show that the first highlighted 

statement is not a tautology and leave the remainder as an exercise. 

We begin by writing out the first highlighted statement as above. 

  ͯὖ & ὗ ṓ ὖͯ Ö ͯὗ  

If it is a tautology there will appear only 4Ωǎ ǳƴŘŜǊ ŎƻƭǳƳƴ ƻŦ ƛǘǎ ƳŀƧƻǊ ŎƻƴƴŜŎǘƛǾŜΣ ƛƴ ǘƘƛǎ ŎŀǎŜ ǘƘŜ ṓ. 

If, in classical logic, the statement is contingent, then an & will appear an under the major connective 

on one or more of the rows of the full truth-table. However in 3-valued logic a contingent statement 

may have an & or a ṩ under the major connective on one or more of the rows of the full truth-table. 

Therefore if we assign an & or a ṩ under the major connective and find no contradiction in doing so, 

we know that the statement is contingent and hence not a tautology. We may proceed with testing 

either an & or a ṩ first, but in this case we shall test ṩ first, thus 

  ͯὖ & ὗ ṓ 0ͯ Ö ͯ1 
      ṩ 
 
Next we attempt to fill in truth values under the remaining columns that would be consistent with 

this. We know that in 3-valued logic that when a 4 implies a ṩ it yields a ṩ, therefore we assign a 4 

to the operator with the largest scope on the left and a ṩ on the right, thus 

  ͯ0 & 1 ṓ 0ͯ Ö ͯ1 
  4    ṩ   ṩ 
  
We continue in this fashion assigning consistent truth-values below each column of the truth table. 

  ͯ0  &  1 ṓ ͯ 0   Ö  ͯ1 
  4 ṩ & ṩ  ṩ  ṩṩṩṩṩ 
 
We find no contradiction in consistently assigning the truth-values as above, therefore there is as 

least one line of the full truth table where a ṩ appears under the major connective, ṓ. Therefore 

the statement is not a tautology. There is no need to proceed with further testing for the possibility 

an & under the major connective because the presence of even one ṩ under the major connective is 

enough to render the statement not a tautology. 

Hint: When testing the remaining highlighted statements for tautologousness, begin by assigning a 

ṩ under the major connective because, as will become apparent, there is at least one row of the full 

truth table for each such statement that features a ṩ under the major connective. 
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T-norm and T-conorm 

Rem. 2.29 When we speak of conjunction or disjunction, the weak connectives, like the bold 

connectives, meet the following minimal requirements that have been proposed in 

general for the conjunctive or disjunctive connective ֙, as the case may be. 

1. Conjunction and disjunction are both associative, i.e. 

 ὖ ὗ Ὑ ḳ ὖ ὗ Ὑ 

2. Conjunction and disjunction are both commutative, i.e. 

 ὖ ὗḳὗ ὖ 

3. Conjunction and disjunction are nondecreasing in both arguments, i.e. Using 

the ranking 4  ṩ & for all interpretations, ἓ holds that 

 Ἔἓ ἠṓἜἓ ᶻἝἓ ἠἓ ᶻἝἓ and Ἔἓ ἠἓṓἝἓ ᶻἜἓ Ἕἓ ᶻἠἓ 

4. If Ɇ is a conjunctive connective, then if Ἔ is 4, then ἜɆἝ has the value of Ἕ 

 

5. If Ö is a disjunctive connective, then if Ἔ is &, then Ἔ Ö Ἕ has the value of Ἕ 

 
Defn. 2.30 Given a linearly ordered set of truth-valves with 4 the greatest and & the least element: 

  A connective fulfilling the conditions of Ɇ is called a t-norm and   

 a connective fulfilling the conditions of Ö is called a t-conorm.  (p. 156) 

 
Lemma 2.31 T-norm and t-conorm operations that satisfy conditions 1 - 5 above will also satisfy: 

6. ἜɆἝ has the value & if either Ἔ or Ἕ has the value & 

 

7. Ἔ Ö Ἕ has the value 4 if either Ἔ or Ἕ has the value 4 

 Proof 6: Assume that Ἔ is &, then if Ἕ is 4 then ἜɆἝ is & (4 above + commutativity). 

Since each truth-value 4, being nondecreasing implies that ἜɆἝ is also & for every 

value of Ἕ. 

 Proof 7: Assume that Ἔ is 4, then if Ἕ is & then Ἔ Ö Ἕ is 4 (5 above + commutativity). 

Since each truth-value &, being nondecreasing implies that Ἔ Ö Ἕ is also 4 for every 

value of Ἕ. 

 Analogous proofs can be constructed for Ἕ being & and 4 respectively. (p. 158) 

 
Lemma 2.32 Ɇ and & are t-norms while Ö and  are t-conorms. 

  Proof: See the truth tables below and the tables defining & and , defn. 2.22 above. 

1. Associativity: Statements expressing association are tautologies. 
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2. Commutativity: The defining tables are symmetric. 

3. Nondecreasing: Every row and column of the tables defining & and  is non-

decreasing from bottom to top and right to left. 

4. Obvious from the tables defining ω* and &* 

5. Obvious from the tables defining v* and ɳ *     (p. 158) 

 
(P Ɇ (Q Ɇ R)) ḳ ((P Ɇ Q) Ɇ R)  (P Ö (Q Ö R)) ḳ ((P Ö Q) Ö R) 
T T T T T T T T T T T  T T T T T T T T T T T 
T ṩ T ṩ ṩ T T T T ṩ ṩ  T T T T ṩ T T T T T ṩ 
T F T F F T T T T F F  T T T T F T T T T T F 
T ṩ ṩ ṩ T T T ṩ ṩ ṩ T  T T ṩ T T T T T ṩ T T 
T ṩ ṩ ṩ ṩ T T ṩ ṩ ṩ ṩ  T T ṩ ṩ ṩ T T T ṩ T ṩ 
T F ṩ F F T T ṩ ṩ F F  T T ṩ ṩ F T T T ṩ T F 
T F F F T T T F F F T  T T F T T T T T F T T 
T F F F ṩ T T F F F ṩ  T T F ṩ ṩ T T T F T ṩ 
T F F F F T T F F F F  T T F F F T T T F T F 
ṩ ṩ T T T T ṩ ṩ T ṩ T  ṩ T T T T T ṩ T T T T 
ṩ ṩ T ṩ ṩ T ṩ ṩ T ṩ ṩ  ṩ T T T ṩ T ṩ T T T ṩ 
ṩ F T F F T ṩ ṩ T F F  ṩ T T T F T ṩ T T T F 
ṩ ṩ ṩ ṩ T T ṩ ṩ ṩ ṩ T  ṩ T ṩ T T T ṩ ṩ ṩ T T 
ṩ ṩ ṩ ṩ ṩ T ṩ ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ ṩ T ṩ ṩ ṩ ṩ ṩ 
ṩ F ṩ F F T ṩ ṩ ṩ F F  ṩ ṩ ṩ ṩ F T ṩ ṩ ṩ ṩ F 
ṩ F F F T T ṩ F F F T  ṩ T F T T T ṩ ṩ F T T 
ṩ F F F ṩ T ṩ F F F ṩ  ṩ ṩ F ṩ ṩ T ṩ ṩ F ṩ ṩ 
ṩ F F F F T ṩ F F F F  ṩ ṩ F F F T ṩ ṩ F ṩ F 
F F T T T T F F T F T  F T T T T T F T T T T 
F F T ṩ ṩ T F F T F ṩ  F T T T ṩ T F T T T ṩ 
F F T F F T F F T F F  F T T T F T F T T T F 
F F ṩ ṩ T T F F ṩ F T  F T ṩ T T T F ṩ ṩ T T 
F F ṩ ṩ ṩ T F F ṩ F ṩ  F ṩ ṩ ṩ ṩ T F ṩ ṩ ṩ ṩ 
F F ṩ F F T F F ṩ F F  F ṩ ṩ ṩ F T F ṩ ṩ ṩ F 
F F F F T T F F F F T  F T F T T T F F F T T 
F F F F ṩ T F F F F ṩ  F ṩ F ṩ ṩ T F F F ṩ ṩ 
F F F F F T F F F F F  F F F F F T F F F F F 

 

(P & (Q & R)) ḳ ((P & Q) & R)  (P  (Q  R)) ḳ ((P  Q)  R) 

T T T T T T T T T T T  T T T T T T T T T T T 
T ṩ T ṩ ṩ T T T T ṩ ṩ  T T T T ṩ T T T T T ṩ 
T F T F F T T T T F F  T T T T F T T T T T F 
T ṩ ṩ ṩ T T T ṩ ṩ ṩ T  T T ṩ T T T T T ṩ T T 
T F ṩ F ṩ T T ṩ ṩ F ṩ  T T ṩ T ṩ T T T ṩ T ṩ 
T F ṩ F F T T ṩ ṩ F F  T T ṩ ṩ F T T T ṩ T F 
T F F F T T T F F F T  T T F T T T T T F T T 
T F F F ṩ T T F F F ṩ  T T F ṩ ṩ T T T F T ṩ 
T F F F F T T F F F F  T T F F F T T T F T F 
ṩ ṩ T T T T ṩ ṩ T ṩ T  ṩ T T T T T ṩ T T T T 
ṩ F T ṩ ṩ T ṩ ṩ T F ṩ  ṩ T T T ṩ T ṩ T T T ṩ 
ṩ F T F F T ṩ ṩ T F F  ṩ T T T F T ṩ T T T F 
ṩ F ṩ ṩ T T ṩ F ṩ F T  ṩ T ṩ T T T ṩ T ṩ T T 
ṩ F ṩ F ṩ T ṩ F ṩ F ṩ  ṩ T ṩ T ṩ T ṩ T ṩ T ṩ 
ṩ F ṩ F F T ṩ F ṩ F F  ṩ T ṩ ṩ F T ṩ T ṩ T F 
ṩ F F F T T ṩ F F F T  ṩ T F T T T ṩ ṩ F T T 
ṩ F F F ṩ T ṩ F F F ṩ  ṩ T F ṩ ṩ T ṩ ṩ F T ṩ 
ṩ F F F F T ṩ F F F F  ṩ ṩ F F F T ṩ ṩ F ṩ F 
F F T T T T F F T F T  F T T T T T F T T T T 
F F T ṩ ṩ T F F T F ṩ  F T T T ṩ T F T T T ṩ 
F F T F F T F F T F F  F T T T F T F T T T F 
F F ṩ ṩ T T F F ṩ F T  F T ṩ T T T F ṩ ṩ T T 
F F ṩ F ṩ T F F ṩ F ṩ  F T ṩ T ṩ T F ṩ ṩ T ṩ 
F F ṩ F F T F F ṩ F F  F ṩ ṩ ṩ F T F ṩ ṩ ṩ F 
F F F F T T F F F F T  F T F T T T F F F T T 
F F F F ṩ T F F F F ṩ  F ṩ F ṩ ṩ T F F F ṩ ṩ 
F F F F F T F F F F F  F F F F F T F F F F F 

  
           (P. 160) 



53 
 

 © philosophy.org.za  
 

Lemma 2.33 Conditions 2 - 5 of Rem 2.29 above uniquely determine classical conjunction and 

disjunction. 

 Proof: Using only the commutativity criterion yields the following 8 symmetric truth-

tables including colouring after Fronhöfer. 

  

  

 

 

 The magenta tables must be excluded because they are not nondecreasing, i.e. 

condition 3 of Rem 2.29. (Check bottom to top and left to right in each case.) The cyan 

tables must be excluded for being neither conjunction nor disjunction, i.e. conditions 4 

and 5 of Rem 2.29.The remaining unshaded tables are the desired truth-tables for 

disjunction above and conjunction below.     (p. 162) 

 

Comparison of Logics 

There are several ways to compare different logical systems, one of which is to compare their sets of 

tautologies and contradictions. Up till now all our semantic concepts e.g. tautology, contradiction, 

validity, entailment etc. have focused on the truth value 4. The results are not so encouraging since 

ἕἡ and Ἄἓ have no tautologies, although l does. Fronhöfer points us towards alternatives. (p. 164) 

 
Designated Truth Values 

Rem. 3.1 In an ά-valued logic, it is customary to distinguish a subset of truth-values of ר  as 

designated. Depending on the intended application of such a logic the designated truth-

values include 4 ŀƴŘ ŀƴȅ ƻǘƘŜǊ ǘǊǳǘƘ ǾŀƭǳŜǎ ǘƘŀǘ ǿŜ ǿƛǎƘ ǘƻ Ŏƻǳƴǘ ŀǎ άƎƻƻŘέ ƻǊ ŀǘ ƭŜŀǎǘ 

άƴƻǘ ōŀŘέΦ 

We can now define tautologies in terms of designated truth-values: 

¶ A formula is a relative tautology iff it has a designated truth-value on every interpretation. 

¶ If only the truth-value 4 is designated then we have the definition of a tautology (proper) as 

we have been using up till now; i.e. a formula that always has the truth-value 4. 

¶ If both truth-values 4 and ṩ are designated we have a so called quasi-tautology. (p. 164) 

 
Quasi-tautology 

Defn. 3.2 A formula F is a quasi-tautology iff F is never false. 

 T F  T F  T F  T F 
T T T  T T  F T  F T 
F T T  T F  T T  T F 
            

T T F  T F  F F  F F 
F F T  F F  F T  F F 
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Rem. 3.3 Note that in classical logic the concepts of tautologousness and quasi- tautologousness 

coincide, since in classical logic a formula that is never false is always true, and vice 

versa. 

 However in 3-valued systems the concepts of tautologousness and quasi- 

tautologousness do not coincide. 

 E.g. Although ἕἡ and Ἄἓ have no tautologies they both have quasi-tautologies: The 

formula ὃ Ö ͯὃ is a quasi-tautology in both systems (as well as in l). 

    

 

   (p. 166) 

Rem. 3.4 Quasi-tautologies are of interest as a way of avoiding falsehood as much as tautologies 

are as a way of embracing truth. 

 The concept of quasi-tautologies is another way of generalising the notion of a classical 

tautology as a formula that is never false rather than one that is always true; therefore 

the concept is also of purely theoretical interest.    

If we have reason to believe that the simple classical tautologies ὃṓὃ and ὃḳὃ should remain 

tautologies within a 3-value system we should prefer l over ἕἡ and Ἄἓ. However, we may we 

prefer quasi-tautologies over tautologies (proper), thus: 

 

 

 

 

 

 

Note:  Every classical tautology is a quasi-tautology in both ἕἡ and Ἄἓ and vice versa. (p. 166 - 168) 

Proofs follow. 

Lemma 3.5 The set of Ἄἓ quasi-tautologies coincides with the set of classical tautologies. 

 Proof: Let ἐ be a quasi-tautology of Ἄἓ. Then by definition ἐ does not have the value & 

on any assignment of truth-values; and therefore ἐ does not have the value & on any 

classical interpretation. 

 Since Ἄἓ is normal, it follows from the Normality Lemma (1.40) that ἐ can only have the 

value 4 on any classical interpretation, therefore ἐ must be a tautology of classical logic. 

! Ö  ͯ !  ! Ö  ͯ  ! 
T T F 4  T T F T 
ṩ ṩ ṩ ṩ  ṩ ṩ ṩ ṩ 
F T T  F  F T T F 

! ṓ  !  ! ṓ  ! 
T T 4  T  T T 
ṩ ṩ ṩ  ṩ ṩ ṩ 
F T  F  F  T F 

! ḳ  !  ! ḳ  ! 
T T 4  T  T  T 
ṩ ṩ ṩ  ṩ ṩ ṩ 
F T  F  F  T  F 
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 Conversely, if ἐ is a formula that is not a quasi-tautology of Ἄἓ, then by definition ἐ has 

the value & on some of its assignments of truth-values in Ἄἓ. Since ṩ is contagious in 

Ἄἓ, this truth-value assignment must be a classical assignment. It follows from the 

Normality Lemma that ἐ has the value & on this assignment in classical logic and 

therefore ἐ cannot be a classical tautology.     (p. 170) 

 

Lemma 3.6 The set of ἕἡ quasi-tautologies coincides with the set of classical tautologies. 

 Proof: This proof follows again from the Normality Lemma as above. 

 The converse claim, that a formula ἐ that is not a ἕἡ quasi-tautology is also not a 

classical tautology is equivalent to the claim that a formula ἐ that has the value & on 

some of its assignments of truth-values in ἕἡ will also have the value & on some 

classical assignment of truth-values. 

 The restated claim above holds trivially that if the truth-value assignment on which ἐ 

has the value & in ἕἡ is a classical assignment of truth-values. 

 According to Fronhöfer, we need to establish that if a formula ἐ has the value & on 

some non-classical assignment of truth-values in ἕἡ, then ἐ will also have the value & on 

some classical assignment of truth-values in ἕἡ. 

 In order for ἐ to have the value & in ἕἡ on an assignment of truth-values on which one 

or more of its atomic components has the value ṩ, uniformity must have overridden 

the ṩ(s) at some point in favour of classical truth-values(s). 

 At each point where uniformity overrode the ṩ(s), the same classical value would have 

resulted if the ṩ(s) had been 4Ωǎ ƻǊ &Ωǎ ƛƴǎǘŜŀŘΦ ό/ƻƳǇŀǊŜ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴǎ ƻŦ the ἕἡ 

truth functions.) 

 Therefore, if we replace all the ṩ(s) that the 3-valued truth assignment assigns with 

either 4Ωǎ ƻǊ &ΩǎΣ ἐ will have the same truth-value on the resulting classical truth-value 

assignment as it did on the 3-valued truth assignment.   (p. 172) 

 
Lemma 3.7 Every l quasi-tautology is a classical tautology. 

 Proof: It follows from the Normality Lemma (1.40) that if a formula consists of 4Ωǎ ƻǊ 

ṩΩǎ ƻƴ ŀƭƭ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ Σ ǘƘŜƴ ƛǘ Ŏŀƴ ƻƴƭȅ Ŏƻƴǎƛǎǘ ƻŦ 4Ωǎ on all classical interpretations. 

However the converse is not so straightforward. 

 
Lemma 3.8 Every classical tautology that contains only negation, conjunction, and disjunction is a l 

quasi-tautology; however some classical tautologies containing the conditional or the 

biconditional are not l quasi-tautologies. 
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 Proof: From Lemma 3.6, it follows that every classical tautology that contains only 

negation, conjunction, and disjunction is a l tautology because negation, conjunction, 

and disjunction in l are defined in the same way in ἕἡ. However there are instances of 

classical tautologies containing the conditional or the biconditional that are not l 

quasi-tautologies. E.g. ͯ ὃṓ Ḑὃ Ö ͯ ὃͯṓὃ is a classical tautology containing a 

conditional that is not a quasi-tautology in l. 

  
 ͯ ! ṓ  ͯ ! Ö  ͯ  ͯ ! ṓ ! 

T T F F T T F F T T T 
F ṩ T ṩ ṩ F F ṩ ṩ T ṩ 
F F T T F T T T F F F 

 

 Also ͯ ὃḳ ὃͯ is a classical tautology containing a biconditional that is not a quasi-

tautology in l. 

  

 

              (p. 174) 

 

Lemma 3.9 The set of ἌἏ quasi-tautologies coincides with the set of classical tautologies. 

 Proof: The only formulae that are not tautologies in ἌἏ but might be quasi-tautologies 

are those which are atomic formulae because no other formulae can have the value ṩ 

in ἌἏ. But such formulae are neither classical tautologies nor quasi-tautologies in ἌἏ 

since they can have the value &. So the set of quasi-tautologies and tautologies is the 

same in ἌἏ and we have already established that that the set of ἌἏ tautologies 

coincides with the set of classical tautologies in Lemma 1.82.  (p. 176) 

 
Summary of Quasi-tautologies 

¶ Classical tautologies and quasi-tautologies coincide in ἕἡ,  Ἄἓ and ἌἏ  (Lemmata 3.5, 3.6 and 

3,9) 

¶ Every quasi-tautology in l is a classical tautology (Lemma 3,7) but the converse does not 

necessarily hold. (Lemma 3.8)          (p. 176) 

 
Quasi-contradiction 

Defn. 3.10 A formula is a quasi-contradiction if it is never true; therefore in any 3-valued system it 

always has the value & or ṩ. 

Lemma 3.11 The properties of quasi-tautologies in 3-valued systems are also the case for quasi-

contradictions. I.e. 

 ͯ ! ḳ  ͯ ! 
4 T & F T 
& ṩ 4 ṩ ṩ 
4 F & T F 
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¶ The set of quasi-contradictions in Ἄἓ, ἌἏ and ἕἡ coincides with the set as the 

set of classical contradictions.  

¶ Every quasi-contradictions in l is a classical contradiction; however 

¶ Some classical contradictions are not quasi-contradictions in l. 

            (p. 178) 

Quasi-entailment 

Rem. 3.12 Tautologies were originally considered the essence of logic (or theorems in case of 

proof-theoretical approaches). However a more recent approach is to consider logical 

consequence or entailment as basic. Tautologies can then be derived from entailment 

as formulae which follow from nothing. 

 
Defn. 3.13 A set of formulae ה quasi-entails a formula F, in symbols ה Ṻ  F, iff there is no truth-

value assignment on which each of the formulae in ה has the value 4 or ṩ when F has 

the value &;  i.e. whenever each formula in ה has either a 4 or ṩ value, then so does F. 

 An argument הȟἐ is quasi-valid iff ה quasi-entails ἐ. 

 

Lemma 3.14 Every quasi-entailment in ἕἡ, l, Ἄἓ and ἌἏ is a classical entailment. 

 Proof: If a set ה of formulae quasi-entails a formula F in any of the four logics above, 

then no interpretation maps all formulae of ה onto 4 or ṩ while mapping F onto &. 

 However, there is no classical interpretation on which all of the formulae in ה have the 

value 4 while F has the value & in that logic. (Of course there will be no value ṩ in any 

classical interpretation. 

 Since all the above logics are normal, it follows from the Normality Lemma 1.40 that F 

has the value 4 on all classical interpretations, which means that the entailment obtains 

in classical logic.        (p. 180) 

 

Lemma 3.15 Not every classical entailment is a quasi-entailment in ἕἡ, l, Ἄἓ and ἌἏ. 

 Proof: counter e.g. 1: The classically valid argument F /Ḉ F Ö F is not quasi-valid in ἌἏ. 

   

 

 

 Note that when F has the value ṩ, the conclusion F Ö F is false. 

 Counter e.g. 2: The classically valid argument F ω ͯF /Ḉ G is not quasi-valid in ἕἡ, l or 

Ἄἓ (although it is valid in all three of these logics). 

F Ṻ  F Ö  F 

T 4 T 4 T 
ṩ & ṩ & ṩ 
F 4 F & F 
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(F ω  ͯ F) Ṻ  G  (F Ɇ  ͯ  F) Ṻ  G 

T F F T T T  T F F T T T 
T F F T T ṩ  T F F T T ṩ 
T F F T T F  T F F T T F 
ṩ ṩ ṩ ṩ T T  ṩ ṩ ṩ ṩ T T 
ṩ ṩ ṩ ṩ T ṩ  ṩ ṩ ṩ ṩ T ṩ 
ṩ ṩ ṩ ṩ F F  ṩ ṩ ṩ ṩ F F 
F F T F T T  F F T F T T 
F F T F T ṩ  F F T F T ṩ 
F F T F T F  F F T F T F 

  
 Note that both tables are identical.      (p. 182) 

Rem. 3.16 Some classically valid arguments are also quasi-valid in more than one of the four 

systems above. 

 E.g. 1: The classically valid argument F ω G /Ḉ F is quasi-valid in ἕἡ, l and ἌἏ.  

F ω G Ṻ  F  F Ɇ  G Ṻ  F 

T 4 T T T  T T T T T 
T ṩ ṩ T T  T F ṩ T T 
T F F T T  T F F T T 
ṩ ṩ T T ṩ  ṩ F T T ṩ 
ṩ ṩ ṩ T ṩ  ṩ F ṩ T ṩ 
ṩ F F T ṩ  ṩ F F T ṩ 
F F T T F  F F T T F 
F F ṩ T F  F F ṩ T F 
F F F T F  F F F T F 

 

 E.g. 2: The classically valid argument F /Ḉ F Ö G is quasi-valid in ἕἡ, l and Ἄἓ. 

F Ṻ  F Ö G  F Ṻ  F Ö  G 

T T T T T  T T T T T 
T T T T ṩ  T T T ṩ ṩ 
T T T T F  T T T T F 
ṩ T ṩ T T  ṩ T ṩ ṩ T 
ṩ T ṩ ṩ ṩ  ṩ T ṩ ṩ ṩ 
ṩ T ṩ ṩ F  ṩ T ṩ ṩ F 
F T F T T  F T F T T 
F T F ṩ ṩ  F T F ṩ ṩ 
F T F F F  F T F F F 

 

Summary of Quasi-entailment 

¶ Every quasi-entailment of ἕἡ, l, Ἄἓ and ἌἏ is a classical entailment. (Lemma 3.14) 
 

¶ Not every classical entailment is a quasi-entailment in ἕἡ, l, Ἄἓ and ἌἏ. (Lemma 3.15) 
           (p. 184) 
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Logic of Paradox 

First proposed by Florencio González Asenjo in 1966 and later popularized by Graham Priest and 

others, Logic of Paradox is a well-known system of paraconsistent logic which attempts to deal with 

contradictions in a άinconsistency-tolerantέ discriminating way. (Wikipedia: Paraconsistent logic) 

Logic of Paradox is formally given by: 

¶ YƭŜŜƴŜΩǎ {ǘǊƻƴƎ о-Valued Logic ἕἡ 

¶ Quasi-entailment 

Vocabulary: Dialetheism όŦǊƻƳ DǊŜŜƪ ʵʽ- Ψtwice' and ˂ʺʻʶʽʰ ΨtruthΩ) is the view that there are some 

statements which are both true and false. (Wikipedia: Dialetheism) 

 

Valid quasi-entailments in ἕἡ 

ὃṺ ὃ Ö ὄ    ͯὃṺ ͯ ὃɆὄ  

ὃṓ ὄṓ ὅ Ṻ ὄṓ ὃṓ ὅ ὃȟͯ ὄṺ ͯ ὃṓ ὄ  

ͯὃṓ ͯὄṺ ὄṓ ὃ   ὃṓ ὃṓ ὄ Ṻ ὃṓ ὄ 

ͯͯὃṺ ὃ    ὃṓ ὄṺ  ͯ ὄṓ  ͯ ὃ 

ὃɆὄṺ ὃ    ͯὃȟͯ ὄṺ ͯ ὃ Ö ὄ  

ͯὃṺ ὃṓ ὄ    ὃṺ ͯͯὃ 

ὃȟὄṺ ὃɆὄ    ͯ ὃṓ ὄ Ṻ ὃ 

ὃṺ ὄṓ ὃ    ὃṓ ὄṺ ὃɆὅ ṓ ὄɆὅ 

ͯ ὃ Ö ὄ Ṻ ͯὃ   ὃṓ  ͯ ὃṺ  ͯ ὃ 

All of the above are also valid entailments except for the one highlighted.  (p. 188) 

 

Not valid quasi-entailments in ἕἡ (but valid entailments in ἕἡ) 

ὃȟͯ ὃ Ö ὄ ṿ ὄ   Disjunctive Syllogism 

ὃṓ ὄȟὄṓ ὅṿ ὃṓ ὅ Hypothetical Syllogism 

ὃȟὃṓ ὄṿ ὄ   Modus Ponens 

ὃṓ ὄȟͯ ὄṿ ͯὃ  Modus Tollens 

ὃɆͯὃṿ ὄ   Ex falso /  ex contradictione quodlibet segitur 

 
See truth tables and discussion below. 
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Rem. 3.17 Using an ω formula in truth tables instead of a (finite) set of formulae is suitable for: 

¶ entailment (proper) since F ω G is 4 iff both F and G are 4 

¶ quasi-entailment since F ω G is 4 or ṩ iff both F and G are either 4 or ṩ 

(p. 188) 
 

Disjunctive Syllogism 

A ω ͯ  A Ö B  Ṻ  B 

T T F T T T T T 
T ṩ F T ṩ ṩ T ṩ 
T F F T F F T F 
ṩ ṩ ṩ ṩ T T T T 
ṩ ṩ ṩ ṩ ṩ ṩ T ṩ 
ṩ ṩ ṩ ṩ ṩ F F F 
F F T F T T T T 
F F T F T ṩ T ṩ 
F F T F T F T F 

 

Colour Key: Classical entailment green, relevant cases for quasi-entailment highlighted: 
   green and cyan correct; magenta incorrect     (p. 190) 
 
 

Historical Example of Disjunctive Syllogism and Ex falso quodlibet sequitur 
 
 
Assumption: Socrates exists and Socrates does not exist. 
 

1. ω - elimination (left simplification): from Socrates exists and Socrates does not exist, it 
follows Socrates exists. 
 

2. ω - elimination (right simplification): from Socrates exists and Socrates does not exist, it 
follows Socrates does not exist. 
 

3. Ἶ - introduction (addition): from Socrates does not exist, it follows Socrates does not 
exit or men are donkeys. 
 

4. disjunctive syllogism: from Socrates exists and Socrates does not exit or men are 
donkeys, it follows men are donkeys. 

 
Conclusion: From a falsehood, everything follows.     (p.190) 
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Hypothetical Syllogism 

A ṓ  B  ω B ṓ  C  Ṻ  A ṓ  C  

T T T T T T T T T T T 
T T T ṩ T ṩ ṩ T T ṩ ṩ 
T T T F T F F T T F F 
T ṩ ṩ ṩ ṩ T T T T T T 
T ṩ ṩ ṩ ṩ ṩ ṩ T T ṩ ṩ 
T ṩ ṩ ṩ ṩ ṩ F F T F F 
T F F F F T T T T T T 
T F F F F T ṩ T T ṩ ṩ 
T F F F F T F T T F F 
ṩ T T T T T T T ṩ T T 
ṩ T T ṩ T ṩ ṩ T ṩ ṩ ṩ 
ṩ T T F T F F T ṩ ṩ F 
ṩ ṩ ṩ ṩ ṩ T T T ṩ T T 
ṩ ṩ ṩ ṩ ṩ ṩ ṩ T ṩ ṩ ṩ 
ṩ ṩ ṩ ṩ ṩ ṩ F T ṩ ṩ F 
ṩ ṩ F ṩ F T T T ṩ T T 
ṩ ṩ F ṩ F T ṩ T ṩ ṩ ṩ 
ṩ ṩ F ṩ F T F T ṩ ṩ F 
F T T T T T T T F T T 
F T T ṩ T ṩ ṩ T F T ṩ 
F T T F T F F T F T F 
F T ṩ T ṩ T T T F T T 
F T ṩ ṩ ṩ ṩ ṩ T F T ṩ 
F T ṩ ṩ ṩ ṩ F T F T F 
F T F T F T T T F T T 
F T F T F T ṩ T F T ṩ 
F T F T F T F T F T F 

 

Colour Key: Classical entailment green, relevant cases for quasi-entailment highlighted: 
   green and cyan correct; magenta incorrect   (rearranged p. 192) 
 

Modus Ponens 

A ω A ṓ  B  Ṻ  B 

T T T T T T T 
T ṩ T ṩ ṩ T ṩ 
T F T F F T F 
ṩ ṩ ṩ T T T T 
ṩ ṩ ṩ ṩ ṩ T ṩ 
ṩ ṩ ṩ ṩ F F F 
F F F T T T T 
F F F T ṩ T ṩ 
F F F T F T F 

 

Colour Key: Above and immediately below: Classical entailment green, relevant cases for quasi-
entailment highlighted: green and cyan correct; magenta incorrect  (p. 192) 
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Modus Tollens 

A ṓ  B  ω ͯ  B Ṻ  ͯ  A 

T T T F F T T F T 
T ṩ ṩ ṩ ṩ ṩ F F T 
T F F F T F T F T 
ṩ T T F F T T ṩ ṩ 
ṩ ṩ ṩ ṩ ṩ ṩ T ṩ ṩ 
ṩ ṩ F ṩ T F T ṩ ṩ 
F T T F F T T T F 
F T ṩ ṩ ṩ ṩ T T F 
F T F T T F T T F 

 

Ex falso / ex contradictione quodlibet segitur 

B is not quasi-entailed by Ἃ ɆͯἋ (Paraconsistence) 
 

A Ɇ ͯ  A Ṻ  B 

T F F T T T 
T F F T T ṩ 
T F F T T F 
ṩ ṩ ṩ ṩ T T 
ṩ ṩ ṩ ṩ T ṩ 
ṩ ṩ ṩ ṩ F F 
F F T F T T 
F F T F T ṩ 
F F T F T F 

 
Colour Key: No classical cases; relevant cases for quasi-entailment highlighted: cyan correct; 

magenta incorrect        (p. 194) 

 

Lemma 3.18 If two formulae ἐ and ἑ of ἕἡ have no propositional variables in common, and if ἑ is 

not a quasi-tautology then ἐṿ ἑ. 

 Proof: If ἑ is not a quasi-tautology, then there exists an interpretation ἓ such that ἑἓ is 

false. Let ἔ be like ἓ except that for all the propositional variables ═ occurring in ἐ are 

such that ═ἔ is ṩ. It then follows that: 

¶ ἐἔ  ṩ (from proof of Lemma 1.38) 

¶ ἑἔ & 

Since for all variables ═ occurring in ἑ, it is the case that ═ἔ ═ἓ, therefore ἑἔ ἑἓ is 

false. Hence ἐṿ ἑ.       (p. 196) 

 
Relation to Relevance Logic 

Lemma 3.18 shows that the Logic of Paradox is a kind of Relevance Logic which requires that the 

antecedent and consequent of implications should be relevantly related. Relevance logic is intended 
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to capture aspects of implication that are ignored by material implication in classical truth-functional 

logic. E.g. άIŦ ǘƘŜ ǎǳƴ ƛǎ ǎƘƛƴƛƴƎ ǘƘŜƴ ǘǿƻ ǎǉǳŀǊŜŘ ƛǎ ŦƻǳǊέ Ƴŀȅ ōŜ ǘǊǳŜ ƛŦ ǘǊŀƴǎƭŀǘŜŘ ŀǎ ŀ ƳŀǘŜǊƛŀƭ 

implication; however it seems intuitively false because a true implication must tie together the 

antecedent and consequent in a way that is relevant.  (Wikipedia: Relevance logic) But we still have 

the quasi-tautology Ὂṓ Ὃṓ Ὂ in which the antecedent and consequence are relevantly 

related. 

F ṓ  (G ṓ  F) 
T T T T T 
T T ṩ T T 
T T F T T 
ṩ ṩ T ṩ ṩ 
ṩ ṩ ṩ ṩ ṩ 
ṩ T F T ṩ 
F T T F F 
F T ṩ ṩ F 
F T F T F 

 

Quasi-Deduction Theorem 

Lemma 3.19 If ἋΣ Χ , Ἃ Ṻ Ἄ, then  ἋΣ Χ Σ Ἃ Ṻ Ἃ ṓ Ἄ 

 Proof: ἋΣ Χ Σ Ἃ Ṻ Ἄ, means that whichever of ἋΣ Χ Σ Ἃ  has at least the valve ṩ, 

then Ἄ has at least the valve ṩ. If we assume that each of the ἋΣ Χ Σ Ἃ  have at 

least the valve ṩ, then for each interpretation ἓ, the following obtain: 

¶ If Ἃ  is false on ἓ, then Ἃ ṓ Ἄ is true on ἓ according to the definition of ṓᶻ. 

¶ Otherwise, if Ἃ  has is at least the value ṩ on ἓ, then Ἄ has at least the value 

ṩ because ἋΣ Χ Σ Ἃ Ṻ Ἄ, but then Ἃ ṓ Ἄ has at least the value ṩ on ἓ 

according to the definition of ṓᶻ.     (p. 198) 

 
Deduction Theorem? 

Note:  There is no deduction theorem with ἕἡ and entailment (proper). 

 It does hold that Ἃ, Ἃṓ ἌṺἌ (essentially Modus Ponens). 

 But it does not hold that ἋṺ Ἃṓ Ἄ ṓἕἌ (see below), 

A  Ɇ Ἃ ṓ  Ἄ Ṻ Ἄ  Ἃ Ṻ Ἃ ṓ  Ἄ ṓ  Ἄ 
T T T T T T T  T T T T T T T 
T ṩ T ṩ ṩ T ṩ  T F T ṩ ṩ ṩ ṩ 
T F T F F T F  T T T F F T F 
ṩ ṩ ṩ T T T T  ṩ T ṩ T T T T 
ṩ ṩ ṩ ṩ ṩ T ṩ  ṩ T ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ ṩ ṩ F T F  ṩ T ṩ ṩ F ṩ F 
F F F T T T T  F T F T T T T 
F F F T ṩ T ṩ  F T F T ṩ ṩ ṩ 
F F F T F T F  F T F T F F F 
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 A simpler counter example is obtained for ὲ = 1, where ṺἋ ṓ Ἄ,  which means that 

Ἃ ṓ Ἄ is a tautology, yet we know that there are no tautologies in ἕἡ. (p. 198) 

 
Enriched Logic of Paradox 

Lƴ ƻǊŘŜǊ ǘƻ άǊŜǎŎǳŜέ aƻŘǳǎ tƻƴŜƴǎ ǿŜ ƴŜŜŘ ǘƻ ƛƴǘǊƻŘǳŎŜ ŀƴƻǘƘŜǊ ŎƻƴŘƛǘƛƻƴal using a different 

symbolΦ {ƛƴŎŜ ǿŜ ŀǊŜ ŀƭǊŜŀŘȅ ǳǎƛƴƎ /ƻǇƛΩǎ ṓ for material implication we will use O  as follows: 

      ὺO ᶻύ             ὺO ᶻύ 

ὺ͵ύ T ṩ F  ὺ͵ύ T ṩ F 

T T ṩ F  T T ṩ F 

ṩ T ṩ F  ṩ T ṩ ṩ 

F T   T T  F F   T T 

 
Rem. 3.20 There is no distinction as to whether the truth value of ἐO ἑ is 4, &  or ṩ. 

Now we get Modus Ponens back: 

A  Ɇ Ἃ ᴼ  Ἄ Ṻ Ἄ  Ἃ Ɇ Ἃ ᴼ  Ἄ Ṻ Ἄ 
T T T T T T T  T T T T T T T 
T ṩ T ṩ ṩ T ṩ  T ṩ T ṩ ṩ T ṩ 
T F T F F T F  T F T F F T F 
ṩ ṩ ṩ T T T T  ṩ ṩ ṩ T T T T 
ṩ ṩ ṩ ṩ ṩ T ṩ  ṩ ṩ ṩ ṩ ṩ T ṩ 
ṩ F ṩ F F T F  ṩ T ṩ F F T F 
F F F T T T T  F T F T T T T 
F F F T ṩ T ṩ  F T F T ṩ T ṩ 
F F F T F T F  F T F T F T F 

           (P.200) 

Ψ9ƴǊƛŎƘŜŘΩ vǳŀǎƛ-Deduction Theorem 

Lemma 3.21 If ἋΣ Χ Σ Ἃ Ṻ Ἄ, then  ἋΣ Χ Σ Ἃ Ṻ Ἃ ᴼ Ἄ 

 Proof: ἋΣ Χ Σ Ἃ Ṻ Ἄ, means that whichever of ἋΣ Χ Σ Ἃ  has at least the valve ṩ, 

then Ἄ has at least the valve ṩ. If we assume that each of the ἋΣ Χ Σ Ἃ  have at 

least the valve ṩ, then for each interpretation ἓ, the following obtain: 

¶ If Ἃ  is false on ἓ, then Ἃ ᴼ Ἄ is true on ἓ according to the definition of Oᶻ. 

 

¶ Otherwise, if Ἃ  has is at least the value ṩ on ἓ, then Ἄ has at least the value 

ṩ because ἋΣ Χ Σ Ἃ Ṻ Ἄ, but then Ἃ ᴼ Ἄ has at least the value ṩ on ἓ 

according to the definition of Oᶻ.     (p. 202) 
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Hypothetical Syllogism 

Ἃ ᴼ  Ἄ Ɇ Ἄ ᴼ  Ἅ  Ṻ  Ἃ ᴼ  Ἅ 

T T T T T T T T T T T 
T T T ṩ T ṩ ṩ T T ṩ ṩ 
T T T F T F F T T F F 
T ṩ ṩ ṩ ṩ T T T T T T 
T ṩ ṩ ṩ ṩ ṩ ṩ T T ṩ ṩ 
T ṩ ṩ F ṩ F F T T F F 
T F F F F T T T T T T 
T F F F F T ṩ T T ṩ ṩ 
T F F F F T F T T F F 
ṩ T T T T T T T ṩ T T 
ṩ T T ṩ T ṩ ṩ T ṩ ṩ ṩ 
ṩ T T F T F F T ṩ F F 
ṩ ṩ ṩ ṩ ṩ T T T ṩ T T 
ṩ ṩ ṩ ṩ ṩ ṩ ṩ T ṩ ṩ ṩ 
ṩ ṩ ṩ F ṩ F F T ṩ F F 
ṩ F F F F T T T ṩ T T 
ṩ F F F F T ṩ T ṩ ṩ ṩ 
ṩ F F F F T F T ṩ F F 
F T T T T T T T F T T 
F T T ṩ T ṩ ṩ T F T ṩ 
F T T F T F F T F T F 
F T ṩ T ṩ T T T F T T 
F T ṩ ṩ ṩ ṩ ṩ T F T ṩ 
F T ṩ F ṩ F F T F T F 
F T F T F T T T F T T 
F T F T F T ṩ T F T ṩ 
F T F T F T F T F T F 

 

           (p. 202) 

Modus Tollens 

Ἃ ᴼ  Ἄ ω ͯ  Ἄ Ṻ  ͯ  Ἃ 

T T T F F T T F T 
T ṩ ṩ ṩ ṩ ṩ F F T 
T F F F T F T F T 
ṩ T T F F T T ṩ ṩ 
ṩ ṩ ṩ ṩ ṩ ṩ T ṩ ṩ 
ṩ F F F T F T ṩ ṩ 
F T T F F T T T F 
F T ṩ ṩ ṩ ṩ T T F 
F T F T T F T T F 

 

Colour Key: below and just above: Classical entailment green, relevant cases for quasi-entailment 
highlighted: green and cyan correct; magenta incorrect 

 
Now we have the same problem we had with ṓ .     (p. 204) 
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Degree entailment 

So far we are familiar with two concepts of entailment: 

1. truth preserving entailment, such as entailment (proper) based on 4 

2. non-falsehood preserving entailment such as quasi-entailment. 

Now Fronhöfer introduces a third concept of entailment i.e. degree-entailment. 

Defn. 3.22 The three truth-values 4, ṩ and & may be ranked as 4  ṩ &. 

¶ We say that a set  of formulae degree-entails a formula F, in symbols  F, iff 

the value of F can never be less than the least value of the formulae in . 

¶ An argument is degree-valid in a 3-valued system iff the set of its premises 

degree-entails its conclusion. 

 

Lemma 3.23 Every degree-entailment of a formula F by a set  of formulae that holds in Ἄἓ, ἌἏ, ἕἡ 

or l is a classical entailment. 

 Proof: In the case that all formulae in  are true, then degree-entailment requires F to 

be true also, i.e. we have a case of classical entailment.   (p. 206) 

 
Lemma 3.24 Degree-entailment is equivalent to entailment proper plus quasi-entailment. 

 Proof: Given the argument ȟἐ: 

¶ Assume  F, then if all the formulae in  are 4, then F must also be 4. Hence 

Ṻ F. If however, all the formulae in  are at least ṩ, then F must also be at 

least ṩ. Hence Ṻ  F. 

¶ Now assume Ṻ F and Ṻ  F, then if all the formulae in  are at least ṩ, then 

Ṻ  F implies that F is also at least ṩ. If however, all the formulae in  are at 

lest 4, then Ṻ F implies that F is also at least 4. 

¶ Therefore  F. 

 

Lemma 3.25 Not every classical entailment is a degree-entailment in ἕἡ; similarly in l, Ἄἓ, and ἌἏ. 

 Proof: According to Lemma 3.15, not every classical entailment is a quasi-entailment in 

ἕἡ, l, Ἄἓ, and ἌἏ. But according to Lemma 3.24 above, degree entailment implies 

quasi-entailment.        (p. 208) 

The argument in l      which can be rewritten 

ὃṓ ὃͯ Ö ͯ ὄṓ ὄͯ     ὃṓ ὄ 
ὃṓ ὃͯ      ͯ ὄ 
ὃͯ       ὃͯ 

 
is quasi-valid, but not degree-valid. 
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! ṓ  " ω ͯ  " Ṻ   ͯ !  ! ṓ  " ω ͯ  "   ͯ ! 

T T T F F T T F T  T T T F F T T F T 
T F ṩ F T ṩ T F T  T F ṩ F T ṩ T F T 
T F F F T F T F T  T F F F T F T F T 
ṩ T T F F T T ṩ ṩ  ṩ T T F F T T ṩ ṩ 
ṩ T ṩ T T ṩ T ṩ ṩ  ṩ T ṩ T T ṩ F ṩ ṩ 
ṩ T F T T F T ṩ ṩ  ṩ T F T T F F ṩ ṩ 
F T T F F T T T F  F T T F F T T T F 
F T ṩ T T ṩ T T F  F T ṩ T T ṩ T T F 
F T F T T F T T F  F T F T T F T T F 

 

According to Fronhöfer, the above example was inspired by Modus Tollens in ἌἏ. (p. 210) 

 
Summary of forms of entailment 

 : T  T  ṩ  ṩ 
F : T  ṩ  T  ṩ 

 

¶ entailment (proper) : green only 

¶ quasi-entailment : all cases 

¶ degree-entailment: all except magenta      (p. 210) 

 

A Derivation System for Classical Propositional Logic 

First Approach 

We require axioms and rules 

¶ Axioms: a certain set of good formulae which shall be true 

¶ Rules of Inference and/or Rules of Proof: AΣ Χ Σ B /Ḉ C, where AΣ Χ Σ B and C are formulae 

¶ If our axioms are formulae we require one or more rules of substitution. 

Disadvantages: 

¶ Axioms and explicit substitution rules of inference make derivations longer. 

¶ Correct rules of substitution and their correct application may be tricky.  (p. 214) 

 
Second Approach1 

Defn. 4.1 An axiom schema stands for infinitely many formulae that have the overall form 

exemplified by the schema. 

 An instance of an axiom schema is defined as any formula that results from the uniform 

substitution of formulae of the language for each of the letters occurring in the axiom 

schema. 
 

1 Compare FronhöferΩǎ ŘŜǾŜƭƻǇƳŜƴǘ ƻŦ ŀ /ƭŀǎǎƛŎŀƭ tǊƻǇƻǎƛǘƛƻƴŀƭ [ƻƎƛŎ ǿƛǘƘ ǘƘŀǘ ƻŦ /ƻǇƛΩǎ wΦ{Φ ƛƴ /ǊƛǘƛŎŀƭ 
Reasoning 21. 
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 By uniform substitution we mean that in any given instance, the same formula must be 

substituted for every occurrence of the same letter. 

 Fronhöfer writes: F / P (read: F instead of P) for the uniform substitution of P by F. 

           (p. 214) 

Axiomatic System for Classical Propositional Logic 
 
Defn. 4.2 CLA (Classical propositional Logic Axiomatic system) 

¶ Axiom Schemata 

CL1 ὖṓ ὗṓὖ 

CL2 ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  

CL3 ὖͯṓ ὗͯ ṓ ὗṓὖ 

¶ Rule of Inference 

Modus Ponens (M.P.) 

ὖ and ὖṓὗ ȾḈὗ     (p. 216) 

Rem. 4.3 M.P. is also known as separation, implication elimination or the rule of detachment 

ōŜŎŀǳǎŜ ƛǘ ŀƭƭƻǿǎ ǘƘŜ ŎƻƴŎƭǳǎƛƻƴ ǘƻ ōŜ άŘŜǘŀŎƘŜŘέ ŦǊƻƳ ǘƘŜ ǇǊŜƳƛǎŜǎΦ 

Rem. 4.4 Each of the axiom schemata is in the form of a tautology, with ὖ, ὗ and Ὑ serving as 

propositional variables. See the truth-table for CL2 below. 

0 ṓ 1 ṓ 2  ṓ 0 ṓ 1 ṓ 0 ṓ 2  
T T T T T T T T T T T T T 
T F T F F T T T T F T F F 
T T F T T T T F F T T T T 
T T F T F T T F F T T F F 
F T T T T T F T T T F T T 
F T T F F T F T T T F T F 
F T F T T T F T F T F T T 
F T F T F T F T F T F T F 

 
 CL1 and CL2 can be verified as tautologous in the same way. 

¶ Any instance of CL1 to CL3 will also be tautologous (proof by induction). 

¶ Modus Ponens is truth-preserving i.e. if  ὖ and ὖṓὗ are both true then so is ὗ. 

          (p. 216) 
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Derivations 

Defn. 4.5 A derivation is a finite sequence of formulae, each of which is 

¶ designated as an assumption, or 

¶ is an instance of an axiom schema, or 

¶ can be derived from earlier formula using Modus Ponens. 

Convention: The formulae designated as assumptions must begin the chain of 

derivations. If F is the last formula in a chain of derivation then we speak of a derivation 

of F. 

 
Defn. 4.6 A formula F of l is derivable from a set of formulae  (symbolised Ṳ F) iff there is a 

derivation of F such that all assumptions in the derivation are elements of . 

 A formula F is provable (symbolised Ṳ F) iff F is derivable from the empty set ( )ɲ. 

 
E.g. 4.7 In the following example of a derivation, Fronhöfer uses the method of Conditional 

Proof but does not explicitly discharge each assumption. Notwithstanding, the same 

rules for Conditional Poof as in Critical Reasoning 09 apply. 

1. &    Conditional Proof Assumption (CPA) 

2. 'ṓ&ṓ &ṓ(  CPA 

3. &ṓ 'ṓ&  CL1, &/0, '/1 

4. 'ṓ&   1,3 M.P. 

5. &ṓ(   2,4 M.P. 

6. (    1,5 M.P.    (p. 218) 

E.g. 4.8 The following example shows that ὃṓὄ is derivable from ͯὃ. 

1. !ͯ    CPA 

2. !ͯṓ "ͯṓ !ͯ  CL1, ͯ!/0, ͯ "/1 

3. "ͯṓ !ͯ   1,2 M.P. 

4. "ͯṓ !ͯ ṓ !ṓ" CL3, "/0, !/1 

5. !ṓ"   3,4 M.P.    (p. 218) 

 
Lemma  4.9 For a deductive system consisting of axiom schemata and M.P., the following hold: 

¶ If Ṳ A, then ᴂṲ A for every superset ᴂ of . 

¶ Hence, in particular, if Ṳ A, then  Ṳ A for every set of formulae . 

¶ Hence, in particular, if A is an axiom, then Ṳ A for every set of formulae . 

¶ If Ṳ A, then there exists a finite subset ᴂ of  such that ᴂṲ A. 

¶ If A is an element of , then Ṳ A. 

¶ If Ṳ A and Ṳ A ṓ B, then Ṳ B. 
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 Proof: The first five points can be trivially proved from defn. 4.5 (derivation) and defn. 

4.6 (derivability). To prove the last point requires that we concatenate the derivations of 

A and A ṓ B, make the assumptions at the begging and then apply M.P. 

 
Defn. 4.10 A derivation that does not contain any assumptions is called a proof. 

 A formula F is called a theorem if there is a proof ending in F. We call this proof a άproof 

of the theorem Fέ. 

 
E.g. 4.11 The following proof establishes that ὃṓὃ  is a theorem. 

1. !ṓ !ṓ! ṓ!  CL1, !/0, !ṓ!/1 

2. !ṓ !ṓ! ṓ! ṓ     CL2, !/0, !ṓ!/1, !/2 
!ṓ !ṓ! ṓ !ṓ!  

 

3. !ṓ !ṓ! ṓ !ṓ!  1,2 M.P 

 

4. !ṓ !ṓ!   CL1, !/0, !/1 

 

5. !ṓ!    3,4 M.P   (p. 220) 

 
Consistency 

Defn. 4.12 In Critical Reasoning 16 we introduced the Post criterion for consistency according to 

which: ά!ƴȅ system is consistent if it contains (that is, can express) a formula that is not 

ǇǊƻǾŀōƭŜ ŀǎ ŀ ǘƘŜƻǊŜƳ ǿƛǘƘƛƴ ǘƘŜ ǎȅǎǘŜƳΦέ According to FronhöferΩǎ definitions: 

¶ A set of formulae  is (syntactically) consistent iff there does not exist a 

formula F such that both F and ͯ F are provable from . 

¶ A set of formulae  is (syntactically) inconsistent iff there does exist a formula F 

such that both F and ͯ F are provable from . 

¶ A set of formulae  is maximally consistent iff  is consistent and Ṳ F for any 

formula F such that ᷾ה  F  is syntactically consistent. 

Recall that because the presence of a contradiction (F ω ͯ F) within a system would 

render every proposition a provable theorem, tƻǎǘΩǎ ŎǊƛǘŜǊƛƻƴ ŦƻǊ ŎƻƴǎƛǎǘŜƴŎȅ and 

CǊƻƴƘǀŦŜǊΩǎ ŘŜŦƛƴƛǘƛƻƴǎ excludes such systems from the class of consistent systems. 

Defn. 4.13 A set of formulae  is semantically consistent or satisfiable iff there exists an 

interpretation on which all formulae in  evaluate to 4.   (p. 222) 
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Soundness 

Defn. 4.14 A derivation system for classical propositional logic is said to be sound iff 

¶ All theorems are tautologies, and 

¶ whenever a formula F is derivable from a set of formulae , then F is also 

entailed by . 

 
Lemma 4.15 The CLA system is sound. 

 Proof: CLA is a sound derivation system because all its axioms are tautologies and its 

single rule of inference (M.P.) is truth-preserving. (cf. Rem 4.4)  (p. 222) 

 
Completeness 

Defn. 4.16 Recall that we introduced the concepts of expressive and deductive completeness in 

Critical Reasoning 16 by way of discussion. Here Fronhöfer is more succinct: 

¶ A derivation system for classical propositional logic is said to be weakly 

complete iff every tautology of classical logic is a theorem within the system. 

¶ A derivation system is said to be strongly complete (or just complete) iff, in 

addition, whenever a set of formulae  entails a formula F, then F is also 

derivable from  within the system. 

¶ A derivation system is said to be adequate for classical propositional logic if it is 

both sound and complete. 

CLA is both complete and sound for classical propositional logic. 

 
Thrm. 4.17 For a formula A of CL and a set of formulae ╢ of CL, the following obtain 

¶ If Ṻ A, then הṲ A (Strong Completeness Theorem) 

¶ If Ṻ A, then Ṳ A  (Weak Completeness Theorem)  (p. 224) 

 
To derive a tautology like Ὂ Ö ὊṓὋ  in CLA, ǿŜ Ƴǳǎǘ ŦƛǊǎǘ ǊŜǿǊƛǘŜ ŀƴȅ ŦƻǊƳǳƭŀŜ ŎƻƴǘŀƛƴƛƴƎ ωΣ Ö and 

ḳ which do not feature on the axiom scheme of CLA, in terms of only ͯ  and ṓ which do. 

 
Defn. 4.18 ὖ Ö ὗ := ͯ ὖṓὗ 

 ὖɆὗ := ͯ ὖṓ ὗͯ  

 ὖḳὗ := ὖṓὗ Ɇὗṓὖ which is equivalent to ͯ ὖṓὗ ṓͯὗṓὖ     (p. 224) 
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E.g. 4.19 To show that Ὂ Ö ὊṓὋ  is a theorem of CLA, we first rewrite the formula as ͯὊṓ

ὊṓὋ using the definition for disjunction above, then we construct a derivation for 

the latter using only CL1 to CL3 and M.P. Thus: 

 
1. Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ  CL1, Ὂͯṓ Ὃͯṓ Ὂͯ ṓ  

Ὂͯṓ Ὃͯṓ Ὂͯ ṓ Ὂͯṓ ὊṓὋ ṓ ὊṓὋ ṓ 
Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ   Ὂͯṓ Ὃͯṓ Ὂͯ ṓ 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ  Ὂͯṓ ὊṓὋ /ὖ  
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ    Ὃͯṓ Ὂͯ ṓ ὊṓὋ /ὗ 
&ͯṓ &ṓ'  

 
2. Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ   CL2, ͯ Ὂ/ὖ, ͯ Ὃṓ Ὂͯ/ὗ, 

Ὂͯṓ Ὃͯṓ Ὂͯ ṓ Ὂͯṓ ὊṓὋ   ὊṓὋȾὙ 
 

3. Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ    1,2 M.P 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ Ὂͯṓ ὊṓὋ  

 
4. Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ  CL2, Ὃͯṓ Ὂͯ ṓ ὊṓὋ /ὖ 

Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ  Ὂͯṓ Ὃͯṓ Ὂͯ ṓ 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ    ὊṓὋ /ὗ 
Ὂͯṓ ὊṓὋ ṓ    Ὂͯṓ Ὃͯṓ Ὂͯ ṓ 
Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ   Ὂͯṓ ὊṓὋ /Ὑ 

Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ  
Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ 
Ὂͯṓ ὊṓὋ  

 
5. Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ   3,4 M.P. 

Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ 
Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ 
Ὂͯṓ ὊṓὋ  

 
6. Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ    CL1, ͯ Ὂ/ὗ 

Ὂͯṓ Ὃͯṓ Ὂͯ ṓ ὊṓὋ    Ὃͯṓ Ὂͯ ṓ ὊṓὋ /ὖ 
 

7. Ὃͯṓ Ὂͯ ṓ ὊṓὋ ṓ    5,6 M.P. 
Ὂͯṓ Ὃͯṓ Ὂͯ ṓ 
Ὂͯṓ ὊṓὋ  

 
8. Ὂͯṓ Ὃͯṓ Ὂͯ     CL1, ͯὊ/ὖ, ͯ Ὃ/ὗ 

 
9. Ὃͯṓ Ὂͯ ṓ ὊṓὋ     CL3, '/0, &/1 

 
10. Ὂͯṓ Ὃͯṓ Ὂͯ ṓ Ὂͯṓ ὊṓὋ   9,7 M.P. 

 
11. Ὂͯṓ ὊṓὋ      8,10 M.P. 

 

We may therefore conclude that Ὂ Ö ὊṓὋ  is a theorem of CLA.  (p. 226) 
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Derived Axiom Schemata and Derived Rules 

 
CLD1 ὖṓὖ (cf. e.g. 4.11) 

CLD2 ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  

H.S. (Hypothetical Syllogism)  From ὖṓὗ and ὗṓὙ infer ὖṓὙ 

Trans. (Transposition) From ὖṓ ὗṓὙ infer ὗṓ ὖṓὙ 

CLD3 ͯ ὖͯṓὖ 

CLD4 ὖṓͯͯ ὖ 

CLD5 ὖṓὗ ṓ ὗͯṓ ὖͯ 

M.T. (Modus Tollens) from ὖṓὗ and ͯ ὗ infer ͯ ὖ 

 
E.g. 4.20 CLD1 can be used to prove that ὃ Ö ͯὃ is a theorem. 

 First, we rewrite ὃ Ö ͯὃ as ͯ ὃṓ ὃͯ (containing only ṓ and ͯ ), then we derive: 

1. ὃͯṓ ὃͯ  CLD1, ͯὃ/ὖ 

 A derivation along the lines of e.g. 4.11 would also be possible.  (p. 228) 

 
Rem. 4.21 Reconsider the derivation of the theorem Ὂͯṓ ὊṓὋ (or Ὂ Ö ὊṓὋ). Except for 

lines 8 and 9 of the derivation in e.g. 4.19 above, the main purpose 

  is to derive ͯ Ὂṓ ὊṓὋ      line 11 

  from ͯ Ὂṓ Ὃͯṓ Ὂͯ and Ὃͯṓ Ὂͯ ṓ ὊṓὋ  lines 8 & 9. 

  Then line 11 is obtained from line 7 using M.P. twice. 

 From these formulae, we see that there is a general pattern of inference 

  that derives a formula of the form ὖṓὙ 

  from the formulae 0ṓ1 and ὗṓὙ. 

 This inference pattern can be introduced as a derived rule yielding: 

  H.S. (Hypothetical Syllogism): From ὖṓὗ and ὗṓὙ infer ὖṓὙ. 

 The justification for H.S. can be constructed using the using the derived axiom: 

  CLD2  ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ     (p. 230) 

 Fronhöfer reproduces the first 7 lines of the derivation below. Compare this to the 

derivation of Ὂ Ö ὊṓὋ  in e.g. 4.19 above. 
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1. ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ ṓ CL1, ὖṓ ὗṓὙ ṓ 
ὗṓὙ ṓ      ὖṓὗ ṓ ὖṓὙ /ὖ, 
ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ   ὗṓὙ/ὗ 

 
2. ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ   CL2, ὖ/ὖ, ὗ/ὗ, Ὑ/Ὑ 

3. ὗṓὙ ṓ      1,2 M.P. 
ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  

 
4. ὗṓὙ ṓ      CL2, ὗṓὙ/ὖ, 

ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ ṓ ὖṓ ὗṓὙ/ὗ, 
ὗṓὙ ṓ ὖṓ ὗṓὙ ṓ   ὖṓὗ ṓ ὖṓὙ/Ὑ 
ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  

 
5. ὗṓὙ ṓ ὖṓ ὗṓὙ ṓ   3,4 M.P. 

ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  
 

6. ὗṓὙ ṓ ὖṓ ὗṓὙ     CL1, ὗṓὙ/ὖ, ὖ/ὗ 
 

7. ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ    5,6 M.P.  (p. 230) 
       

H.S. (Hypothetical Syllogism): From ὖṓὗ and ὗṓὙ, infer ὖṓὙ. 

1. ὖṓὗ      CPA 

2. ὗṓὙ     CPA 

3. ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ   CLD2 ὖ/ὖ, ὗ/ὗ, Ὑ/Ὑ 

4. ὖṓὗ ṓ ὖṓὙ    2,3 M.P. 

5. ὖṓὙ      1,4 M.P. 

According to the above derivation, if we have ὖṓὗ and ὗṓὙ, whether or not they are 

assumptions, we can derive ὖṓὙ. 

 
Rem. 4.22 Using H.S. can drastically shorten the derivation of Ὂͯṓ ὊṓὋ in e.g. 4.19 above: 

1. Ὂͯṓ Ὃͯṓ Ὂͯ   CL1, ͯὊ/ὖ, ͯ Ὃ/ὗ  (was line 8 above) 

2. Ὃͯṓ Ὂͯ ṓ ὊṓὋ   CL3, Ὃ/ὖ, Ὂ/ὗ   (was line 9 above) 

3. Ὂͯṓ ὊṓὋ    1,2 H.S.    (p. 232) 

 
Trans. (Transposition): From ὖṓ ὗṓὙ infer ὗṓ ὖṓὙ. 

1. ὖṓ ὗṓὙ      CPA 

2. ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὗ ṓ CLD2, ὗ/ὖ, ὖṓὗ/ὗ, 
ὗṓ ὖṓὙ     ὖṓὙ/Ὑ 

 
3. ὖṓὗ ṓ ὖṓὙ ṓ   CL2, ὖṓὗ ṓ ὖṓὙ/ὖ, 

ὗṓ ὖṓὗ ṓ ὗṓ ὖṓὙ ṓ ὗṓ ὖṓὗ /ὗ 
ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὗ ṓ ὗṓ ὖṓὙ/Ὑ 
ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὙ  
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4. ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὗ ṓ 2,3 M.P 

ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὙ  
 

5. ὗṓ ὖṓὗ      CL1, ὗ/ὖ, ὖ/ὗ 
 

6. ὗṓ ὖṓὗ ṓ ὖṓὗ ṓ ὖṓὙ ṓ CL1, ὗṓ ὖṓὗ /ὖ, 
ὗṓ ὖṓὗ     ὖṓὗ ṓ ὖṓὙ/ὗ 

 
7. ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὗ  5,6 M.P 
 

8. ὖṓὗ ṓ ὖṓὙ ṓ ὗṓ ὖṓὙ  4,7 M.P. 
 

9. ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  CL2, ὖ/ὖ, ὗ/ὗ, Ὑ/Ὑ 
 

10. ὖṓ ὗṓὙ ṓ ὗṓ ὖṓὙ   8,9 H.S. 
 

11. ὗṓ ὖṓὙ      1,10 M.P.   (p. 232) 
        

CLD3 ͯ ὖͯṓὖ 

1. ͯͯ ὖṓ ͯͯ ͯͯ ὖṓͯͯ ὖ   CL1, ͯ ὖͯ/ὖ, ͯ ͯͯ ὖͯ/ὗ 
 

2. ͯͯ ͯͯ ὖṓͯͯ ὖ ṓ ὖͯṓͯͯ ὖͯ  CL3,  ͯ ͯͯ ὖ/ὖ, ͯ ὖ/ὗ 
 

3. ͯͯ ὖṓ ὖͯṓͯͯ ὖͯ   1,2 H.S. 
 

4. ὖͯṓͯͯ ὖͯ ṓ ͯͯ ὖṓὖ   CL3, ὖ/ὖ, ͯ ὖͯ/ὗ 
 

5. ͯͯ ὖṓ ͯͯ ὖṓὖ    3,4 H.S. 
 

6. ͯͯ ὖṓ ͯͯ ὖṓὖ ṓ   CL2, ͯ ὖͯ/ὖ, ͯ ὖͯ/ὗ, ὖ/Ὑ 
ͯͯ ὖṓͯͯ ὖ ṓ ͯͯ ὖṓὖ 

 
7. ͯͯ ὖṓͯͯ ὖ ṓ ͯͯ ὖṓὖ   5,6 M.P. 

 
8. ͯͯ ὖṓͯͯ ὖ     CLD1, ͯ ὖͯ/ὖ 

 
9. ͯͯ 0ṓ0     7,8 M.P. 

        

CLD4 ὖṓͯͯ ὖ 
 

1. ͯͯ ὖͯṓ ὖͯ     CLD3, ͯὖ/ὖ 
 

2. ͯͯ ὖͯṓ ὖͯ ṓ ὖṓͯͯ ὖ   CL3, ͯ ὖͯ/ὖ, ὖ/ὗ 
 
3. 0ṓͯͯ 0     1,2 M.P    (p. 232) 
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CLD5 ὖṓὗ ṓ ὗͯṓ ὖͯ (The converse of CL3) 

1. ὗṓͯͯ ὗ ṓ ὖṓὗ ṓ ὖṓͯͯ ὗ  CLD2, ὖ/ὖ, ὗ/ὗ, ͯ ὗͯ/Ὑ 
 
2. ὗṓͯͯ ὗ     CLD4, ὗ/ὖ 

 
3. ὖṓὗ ṓ ὖṓͯͯ ὗ    1,2 M.P. 

 
4. ὖṓͯͯ ὗ ṓ ͯͯ ὖṓὖ ṓ  CLD2, ͯ ὖͯ/ὖ, ὖ/ὗ, ͯ ὗͯ/Ὑ 

ͯͯ ὖṓͯͯ ὗ  
 

5. ͯͯ ὖṓὖ ṓ ὖṓͯͯ ὗ ṓ  4 Trans. 
ͯͯ ὖṓͯͯ ὗ  

 
6. ͯͯ ὖṓὖ     CLD3, ὖ/ὖ 

 
7. ὖṓͯͯ ὗ ṓ ͯͯ ὖṓͯͯ ὗ   5,6 M.P. 

 
8. ὖṓὗ ṓ ͯͯ ὖṓͯͯ ὗ    3,7 H.S. 

 
9. ͯͯ ὖṓͯͯ ὗ ṓ ὗͯṓ ὖͯ  CL3, ͯὖ/ὖ, ͯ ὗ/ὗ 

 
10. ὖṓὗ ṓ ὗͯṓ ὖͯ   8,9 H.S. 

 
 
M.T. (Modus Tollens): From ὖṓὗ and ͯ ὗ, infer ͯ ὖ  
 

1. ὖṓὗ      CPA 
 

2. ὗͯ      CPA 
 

3. ὖṓὗ ṓ ὗͯṓ ὖͯ   CLD5, ὖ/ὖ, ὗ/ὗ 
 

4. ὗͯṓ ὖͯ     1,3 M.P. 
 

5. ὖͯ      2,4 M.P. 
 

 
E.g. 4.23 If the economy is sound, then the unemployment rate is low or spending is high. If the 

unemployment rate is low, then most people are well off. If spending is high, then most 

ǇŜƻǇƭŜ ŀǊŜ ǿŜƭƭ ƻŦŦΦ LǘΩǎ ƴƻǘ ǘǊǳŜ ǘƘŀǘ Ƴƻǎǘ ǇŜƻǇƭŜ ŀǊŜ ǿŜƭƭ ƻŦŦΦ Therefore the economy is 

not sound. 

 The above argument can be symbolised as: 

  %ṓ 5 Ö 3 
  5ṓ7 
  3ṓ7 
  7ͯ 
  Ḉͯ % 
 



77 
 

 © philosophy.org.za  
 

 Fronhöfer rewrites the first premise as %ṓ 5ͯṓ3. This is possible because of the 

logical equivalence ὴ Ö ήḳ ὴͯṓή; however strictly the justification for this move 

should have been included in the proof that follows. 

1. %ṓ 5ͯṓ3     CPA 

2. 5ṓ7      CPA 

3. 3ṓ7      CPA 

4. 7ͯ      CPA 

5. 5ͯ       2,4 M.T. 

6. 3ͯ       3.4 M.T. 

7. 5ͯṓ3ṓ 3ͯṓͯͯ 5    CLD5, ͯ5/0, 3/1 

8. 3ͯṓ 5ͯṓ3ṓͯͯ 5    7 Trans. 

9. 5ͯṓ3ṓͯͯ 5     6,8 M.P. 

10. 5ͯṓ3ṓͯͯ 5 ṓ ͯͯ 5ͯṓͯ 5ͯṓ3  CLD5, ͯ5ṓ3/0, ͯ 5ͯ/1 

11. ͯͯ 5ͯṓͯ 5ͯṓ3    9,10 M.P. 

12. 5ͯṓͯͯ 5ͯ     CLD4, ͯ5/0 

13. ͯͯ 5ͯ      5,12 M.P. 

14. ͯ 5ͯṓ3      11,13 M.P. 

15. %ͯ       1,14 M.T. 

 
Rem. 4.24 The derived axiom schema and derived rules are a convenience for constructing 

derivations. Since the axiom schemata CL1 - CL3 together with the rule M.P. alone form 

a complete derivation system for classical propositional logic, additional axioms and 

rules do not increase the power of the system or its soundness, since they are all 

derivable from within the system that was sound to begin with.  (p. 238) 

 

Deduction Theorems 

 
Rem. 4.25 Given any logic with semantic concepts of entailment and tautology and with 

syntactic/proof-theoretical concepts of derivation and theorems, it is an interesting 

question as to whether the following theorems obtain in such a logic. 

(Syntactic/Proof-Theoretical) Deduction Theorem 

¶ A formula Ἕ is derivable from a set of formulae Ἔ, ΧΣ Ἔ of formulae iff Ἔ ṓἝ 

is derivable from Ἔ, ΧΣ Ἔ . For the special case of ὲ ρ, a formula Ἕ is 

derivable from a formula Ἔ iff ἜṓἝ is a theorem. 

(Semantic) Deduction Theorem 

¶ A set Ἔ of formulae entails a formula Ἕ iff ἜṓἝ is a tautology,     

i.e. ἜṺἝ iff ṺἜṓἝ      (p. 240) 
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Rem. 4.26 The (Syntactic/Proof-Theoretical) Deduction Theorem is of great practical importance in 

deriving theorems since it is usually easier to derive Ἕ from Ἔ than to derive ἜṓἝ 

directly. 

 The (Semantic) Deduction Theorem allows entailment to be mapped onto the language 

being used. (Compare the implication connectives ṓ  and O  (our notation) with the 

Logic of Paradox. 

 Both of the above theorems coincide with a sound and complete calculus. (p. 240) 

 
Syntactic Deduction Theorem 

 
Thrm. 4.27 For propositional formulae Ἔ and Ἕ of classical logic: Ἕ is derivable from Ἔ in CLA if Ἔṓ

Ἕ is a theorem in CLA. 

 Proof: If ἜṓἝ is a theorem, then there exists a proof / derivation of ἜṓἝ in CLA. We 

can add Ἔ to this proof as the only assumption and then use M.P. to derive Ἕ from Ἔ 

and ἜṓἝ. 

      0 Ἔ  CPA 

1    ἐ Justification 1   1 ἐ  Justification 1 

ể    ể         ể          ṓ  ể ể          ể 

ὲ-1  ἐ     Justification ὲ-1    ὲ-1   ἐ   Justification ὲ-1 

ὲ      ἜṓἝ   Justification ὲ    ὲ   ἜṓἝ  Justification ὲ 

      ὲ+1 Ἕ  ὲ,0 M.P 

Given a derivation ꜠  of Ἕ from the only assumption Ἔ consisting of the sequence ἠ , 

ἠΣ Χ Σ ἠ , ἠ  where ἠ  is Ἔ and ἠ  is Ἕ, we can produce a new derivation ꜠  in 

which, inter alia, each of the formulae  Ἔṓἠ , ἜṓἠΣ Χ Σ Ἔṓἠ , Ἔṓἠ  occurs 

as a theorem. 

Each of ἠ , ἠΣ Χ Σ ἠ , ἠ  will either be an assumption, an instance of an axiom 

schema, or will follow by M.P. from previous formulae in the derivation. 

¶ In the case that ἠ is our assumption (ἠ = ἠ  = Ἔ), we derive  ἠ ṓἠ as we 

did for ὃṓὃ  in e.g. 4.11 above. 

 

¶ In the case that ἠ is an instance of an axiom schema from step Ὥ of ꜠ , we may 

add the following lines to derive Ἔṓἠ in the new derivation, thus: 

ά ἠ   by the relevant axiom schema 

ά+1  ἠ ṓ Ἔṓἠ   CL1, ἠ/Ἔ, Ἔ/Ἕ 
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ά+2 Ἔṓἠ   ά+1,ά+2 M.P. 

Note that ά is the step in ꜠  to which step Ὥ of ꜠  has been shifted. 

 

¶ In the third case, ἠ follows by M.P. from earlier formulae ἠ  and ἠ ṓἠ░ in 

the sequence ἠ , ἠΣ Χ Σ ἠ , ἠ , i.e. where ἠ  and ἠ ṓἠ░ are among ἠ , 

ἠΣ Χ Σ ἠ  in ꜠ . If so, we already have Ἔṓἠ  and Ἔṓ ἠ ṓἠ░ in the 

new derivation ꜠ , say on lines ά and ὲ (by induction hypothesis). Three more 

lines are required to derive Ἔṓἠ: 

ά Ἔṓἠ  

ể 

ὲ Ἔṓ ἠ ṓἠ  

ể 

έ Ἔṓ ἠ ṓἠ ṓ  CL2, Ἔ/Ἔ, ἠ /Ἕ, ἠ/ἠ 
 Ἔṓἠ ṓ Ἔṓἠ  
 
έ+1 Ἔṓἠ ṓ Ἔṓἠ   έ,ὲ M.P. 
 
έ+2 Ἔṓἠ    έ+1,ά M.P. 

Note that έ is the step in ꜠  to which Ὥ of ꜠  has been shifted. (p. 242 - 244) 

 
E.g. 4.28 Using the above method, construct a derivation establishing that ͯὃṓ ὃṓὄ  is a 

theorem. 

 In example 4.8, reproduced below, Fronhöfer showed that ὃṓὄ is derivable from ͯὃ. 

1. ὃͯ    CPA 

2. ὃͯṓ ὄͯṓ ὃͯ  CL1, ͯὃ/ὖ, ͯ ὄ/ὗ 

3. ὄͯṓ ὃͯ   2,1 M.P. 

4. ὄͯṓ ὃͯ ṓ ὃṓὄ  CL3, ὄ/ὖ, ὃ/ὗ 

5. ὃṓὄ   4,3 M.P. 

 We can now construct a derivation establishing that ͯὃṓ ὃṓὄ  is a theorem. The 

derivation below is set out so that lines containing conditionals whose consequents are 

formulae from the earlier derivation are marked with a red numeral to the right for the 

line number of that derivation. According to Fronhöfer, shorter derivations are also 

possible. E.g. there is no need to derive the formula on line 11 since it already appears 

on line 6.          (p. 244) 

1. ὃͯṓ ὃͯṓ ὃͯ ṓ ὃͯ   CL1, ͯὃ/ὖ, ͯ ὃṓ ὃͯ/ὗ 
 

2. ὃͯṓ ὃͯṓ ὃͯ ṓ ὃͯ ṓ  CL2, ͯὃ/ὖ, ͯ ὃṓ ὃͯ/ὗ 
  ὃͯṓ ὃͯṓ ὃͯ ṓ ὃͯṓ ὃͯ   ὃͯ/Ὑ 
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3. !ͯṓ !ͯṓ !ͯ ṓ !ͯṓ !ͯ  2,1 M.P. 

 
4. ὃͯṓ ὃͯṓ ὃͯ    CL1, ͯὃ/ὖ, ὃ/ὗ 

 
5. ὃͯṓ ὃͯ     1. 3,4 M.P. 

 
6. ὃͯṓ ὄͯṓ ὃͯ    CL1, ͯὃ/ὖ, ͯ ὄ/ὗ 

 
7. ὃͯṓ ὄͯṓ ὃͯ ṓ   CL1, ͯὃṓ ὄͯṓ ὃͯ/ὖ 

  ὃͯṓ ὃͯṓ ὄͯṓ ὃͯ    ὃͯ/ὗ 
 

8. ὃͯṓ ὃͯṓ ὄͯṓ ὃͯ    2. 7,6 M.P. 
 

9. ὃͯṓ ὃͯṓ ὄͯṓ ὃͯ ṓ  CL2, ͯὃ/ὖ, ͯ ὃ/ὗ 
  ὃͯṓ ὃͯ ṓ ὃͯṓ ὄͯṓ ὃͯ   ὃͯṓ ὄͯ/Ὑ 

 
10. ὃͯṓ ὃͯ ṓ ὃͯṓ ὄͯṓ ὃͯ   9,8 M.P. 

 
11. ὃͯṓ ὄͯṓ ὃͯ    3. 10,5 M.P. 

 
12. ὄͯṓ ὃͯ ṓ ὃṓὄ    CL3, ὄ/ὖ, ὃ/ὗ 

 
13. ὄͯṓ ὃͯ ṓ ὃṓὄ ṓ   CL1, ͯὃ/ὗ 

  ὃͯṓ ὄͯṓ ὃͯ ṓ ὃṓὄ   ὄͯṓ ὃͯ ṓ ὃṓὄ /ὖ 
 

14. ὃͯṓ ὄͯṓ ὃͯ ṓ ὃṓὄ   4. 13,12 M.P. 
 

15. ὃͯṓ ὄͯṓ ὃͯ ṓ ὃṓὄ ṓ  CL2, ͯὃ/ὖ, ͯ ὄṓ ὃͯ/ὗ 
  ὃͯṓ ὄͯṓ ὃͯ ṓ ὃͯṓ ὃṓὄ  ὃṓὄ/Ὑ 

 
16. ὃͯṓ ὄͯṓ ὃͯ ṓ ὃͯṓ ὃṓὄ  15,14 M.P. 

 
17. ὃͯṓ ὃṓὄ     5. 16,11 M.P. 

 
           (P. 246) 
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!ƴ !ȄƛƻƳŀǘƛŎ {ȅǎǘŜƳ ŦƻǊ _ǳƪŀǎƛŜǿƛŎȊΩǎ 3-Valued Logic 

 
Rem. 4.29 Both YƭŜŜƴŜΩǎ ŀƴŘ .ƻŎƘǾŀǊΩǎ ŎƻƴƴŜŎǘƛǾŜǎ can be defined using those of _ǳƪŀǎƛŜǿƛŎȊ; 

therefore we can represent inferences for the first two systems within l axiomatic 

systems. Note that, Fronhöfer is working towards fuzzy logic, in which the bulk of formal 

work is based upon _ǳƪŀǎƛŜǿƛŎȊΩǎ ƛƴŦƛƴƛǘŜ-valued generalization of his 3-valued system. 

 
Proof of Soundness and Completeness of the Axiomatic System for l 

 
Defn. 4.30 The lA axiomatic system of Wajsberg, 1931 

 l1   ὖṓ ὗṓὖ 

 l2   ὖṓὗ ṓ ὗṓὙ ṓ ὖṓὙ  

 l3   ὖͯṓ ὗͯ ṓ ὗṓὖ 

 l    ὖṓ ὖͯ ṓὖ ṓὖ 

 M.P. From ὖ and ὖṓὗ infer ὗ      (p. 250) 

 
Rem. 4.31 Using the definitions of the connectives Ö, ω and ḳ all formulae in l can be expressed 

using ͯ  and ṓ that appear in WajsbergΩǎ axiomatic system above. 

 Axiom schemata l1 and l3 are identical to CL1 and CL3 respectively for classical logic. 

 The axiom schema CL2 ὖṓ ὗṓὙ ṓ ὖṓὗ ṓ ὖṓὙ  is not a axiom of lA 

and is not derivable within lA since it is not a tautology in l. On the other hand 

schemata l2 and l  are derivable in CLA since they are classical tautologies and the 

classical logic system is complete. Therefore, all the axioms of l1 to l  are classical 

tautologies. 

 Any derivation in CLA ǘƘŀǘ ŘƻŜǎƴΩǘ ƛƴǾƻƭǾŜ CL2 will be a derivation in lA and any axiom 

that is derivable in CLA without using CL2 will be a derivation in lA. 

 
Rem. 4.32 Consider next CLD1Ωǎ ὖṓὖ. Is there a different derivation? l Ωǎ ὖṓ ὖͯ ṓὖ ṓὖ 

looks like a possible candidate. Recall that ὖ Ö ὗ may be defined as ὖṓὗ ṓὗ in l. 

Therefore the axiom schema of l  may be rewritten as ὖṓ ὖͯ Ö ὖ, or as 

ͯ ὖṓὖ ṓὖ ). 

 According to Fronhöfer, this is closely related to the Law of the Excluded Middle. 

However, the Law of the Excluded Middle is not a tautology in l but ὖṓ ὖͯ Ö ὖ is a 

tautology in l. 

¶ If ὖ is 4 then ὖṓ ὖͯ Ö ὖ is 4 because ὖ is the right disjunct, and if 

¶ if ὖ is ṩ or &, then the left conjunct is 4, hence ὖṓ ὖͯ Ö ὖ is 4. 
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Rem. 4.33 l Ωǎ  ὖṓὗ ṓὖ ṓὖ is a classical tautology, but not a tautology in l. If ὗ is 

replaced by ͯ ὖ below the contingency under the major connective is eliminated. 

0 ṓ 1 ṓ 0 ṓ  0 
4 4 4 4  4 4  4 
4 ṩ ṩ 4  4 4  4 
4 & & 4  4 4  4 
ṩ 4 4 ṩ ṩ 4 ṩ 
ṩ 4 ṩ ṩ ṩ 4 ṩ 
ṩ ṩ & 4 ṩ ṩ ṩ 
& 4 4 &  & 4  & 
& 4 ṩ &  & 4  & 
& 4 & &  & 4  & 

 

Derived Axioms and Rules I 

lD1 ͯ ὖṓ ὖṓὗ  

lD2 ͯ ὖͯṓὖ 

H.S. (Hypothetical Syllogism) From ὖṓὗ and ὗṓὙ, infer ὖṓὙ. 

lD3 ὖṓͯͯ ὖ 

lD4 ὖṓὖ (new proof required for l) 

lD5 ὖṓὖ ṓὗ ṓὗ 

lD6 ὖṓ ὖṓὗ ṓὗ  

lD7 ὖṓ ὗṓὙ ṓ ὗṓ ὖṓὙ  

Con. (Contraposition) From ͯ ὖṓ ὗͯ infer ὗṓὖ. 

LSimp. (Left Conjunct Simplification) From ὖ ω ὗ infer ὖ. 

RSimp. (Right Conjunct Simplification) From ὖ ω ὗ infer ὗ. 

Sub. (Substitution) From  ὖṓὗ, ὗṓὖ and a formula Ὑ that contains ὖ as a sub-formula, infer any 

formula Ὑᶻ that is the result of replacing one or more occurrences of ὖ in Ὑ with ὗ. 

M.T. (Modus Tollens) From ὗṓὖ and ͯ ὖ derive ͯ ὗ. 

D.N. (Double Negation) From any formula Ὑ that contains ὖ as a constituent, infer any formula Ὑᶻ 

that is the result of replacing one or more occurrences of ὖ in Ὑ with ͯ ὖͯ and vice versa.  (p. 254) 
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Derived Axioms and Rules II 

Tran. (Transposition) For any formula Ὑ that contains ὖṓ ὗṓὛ as a sub-formula, infer any 

formula Ὑᶻ that is the result of replacing one or more occurrences of ὖṓ ὗṓὛ in Ὑ with ὗṓ

ὖṓὛ. 

GCon. (Generalised Contraposition) For any formula Ὑ that contains ὖṓὗ as a sub-formula, infer 

any formula Ὑᶻ that is the result of replacing one or more occurrences of ὖṓὗ in Ὑ with ͯ ὗṓ ὖͯ 

and vice versa. 

lD8 ͯ ὖṓὗ ṓὖ 

GHS (Generalised Hypothetical Syllogism) From ὖṓ ὖṓỄ ṓ ὖ ṓὖ ȣ  and ὖṓὗ, 

infer ὖṓ ὖṓỄṓὖ ṓὗȣ . 

GMP (Generalised Modus Ponens) From ὖṓ ὖṓỄṓ ὖ ṓὖ ȣ  and one of the 

antecedents ὖ, 1 Ὥ ὲ ς 1, infer the conditional that results from deleting ὖ, the conditional 

hook following ὖ, and associated parentheses. 

MCD (Modified Constructive Dilemma) From ὖṓὗ  and ὖṓ ὖͯ ṓὗ, infer ὗ. 

DE (Disjunction Elimination) From ὖ Ö ὗ, ὖṓὙ and ὗṓὙ, infer Ὑ. 

DC (Disjunctive Consequence) From ὖṓὙ and ὗṓὙ, infer ὖ Ö ὗ ṓὙ. 

lD9   ὖ Ö ὗ ṓ ὗ Ö ὖ 

lD10 ὖṓὗ Ö ὗṓὖ 

lD11 ὖṓ ὖṓ ὖṓὗ ṓ ὖṓ ὖṓὗ  

C.I. (Conjunction Introduction) From ὖ and ὗ, infer ὖɆὗ.    (p. 254 ) 

 
FronhöferΩǎ Ǉroofs follow: 

lD1 ͯ ὖṓ ὖṓὗ  

1. ὖͯṓ ὗͯṓ ὖͯ     l1, ͯ ὖ/ὖ, ͯ ὗ/ὗ 

 

2. ὗͯṓ ὖͯ ṓ ὖṓὗ     l3, ὗ/ὖ, ὖ/ὗ 

 

3. 0ͯṓ 1ͯṓ 0ͯ ṓ    l2, ͯ ὖ/ὖ, 

ὗͯṓ ὖͯ ṓ ὖṓὗ ṓ   ὗͯṓ ὖͯ/ὗ, ὖṓὗ/Ὑ 

ὖͯṓ ὖṓὗ  

 

4. ὗͯṓ ὖͯ ṓ ὖṓὗ ṓ    3,1 M.P. 

ὖͯṓ ὖṓὗ  

 

5. ὖͯṓ ὖṓὗ      4,2 M.P.  (p. 256) 
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H.S. (Hypothetical Syllogism) From ὖṓὗ and ὗṓὙ, infer ὖṓὙ. 

1. ὖṓὗ      CPA 

 

2. ὗṓὙ      CPA 

 

3. ὖṓὗ ṓ ὗṓὙ ṓ ὖṓὙ    l2 

 

4. ὗṓὙ ṓ ὖṓὙ     3,1 M.P. 

 

5. ὖṓὙ      4,2 M.P.  (p. 256) 

 
lD2 ͯ ὖͯṓὖ       

1. ͯͯ ὖṓ ὖͯṓͯὖṓ ὖͯ     lD1, ͯ ὖ/ὖ, ͯ ὖṓ ὖͯ/ὗ 

 

2. ὖͯṓͯὖṓ ὖͯ ṓ    l3, ὖ/ὖ, ὖṓ ὖͯ/ὗ 

ὖṓ ὖͯ ṓὖ 

 

3. ͯͯ ὖṓ ὖṓ ὖͯ ṓὖ    1,2 H.S. 

 

4. ὖṓ ὖͯ ṓὖ ṓὖ    l4, ὖ/ὖ 

 

5. ͯͯ ὖṓὖ      3,4 H.S. 

 
lD3 ὖṓͯͯ ὖ 

1. ͯͯ ὖͯṓ ὖͯ     lD2, ͯ ὖ/ὖ 

 

2. ͯͯ ὖͯṓ ὖͯ ṓ ὖṓͯͯ ὖ   l3, ͯ ὖͯ/ὖ, ὖ/ὗ 

 

3. ὖṓͯͯ ὖ      2,1 M.P.  (p. 256) 

 
lD4 ὖṓὖ (= CLD1) 

1. ὖṓͯͯ ὖ      lD3, ὖ/ὖ 

 

2. ͯͯ ὖṓὖ      lD2, ὖ/ὖ 

 

3. ὖṓὖ      1,2 H.S.   (p. 258) 

 
lD5 ὖṓὖ ṓὗ ṓὗ 

1. ὖṓὖ ṓ ὗṓ ὗͯ ṓ ὖṓὖ    l1, ὖṓὖ/0, ὗṓ ὗͯ/ὗ 

  



85 
 

 © philosophy.org.za  
 

2. ὖṓὖ      lD4, ὖ/ὖ 

 

3. ὗṓ ὗͯ ṓ ὖṓὖ    1,2 M.P 

 

4. ὗṓ ὗͯ ṓ ὖṓὖ ṓ    l2, ὗṓ ὗͯ/ὖ, ὖṓὖ/ὗ, ὗ/Ὑ 

ὖṓὖ ṓὗ ṓ ὗṓ ὗͯ ṓὗ  

 

5. ὖṓὖ ṓὗ ṓ ὗṓ ὗͯ ṓὗ    4,3 M.P. 

 

6. ὗṓ ὗͯ ṓὗ ṓὗ    l4, ὗ/ὖ 

 

7. ὖṓὖ ṓὗ ṓὗ     5,6 H.S.   (p. 258) 

 
Note: The following formula is equivalent to ὖṓ ὖ Ö ὗ  when rewritten with l disjunction. 
 
lD6 ὖṓ ὖṓὗ ṓὗ  
 

1. ὖṓ ὖṓὖ ṓὖ     l1, ὖ/ὖ, ὖṓὖ/ὗ 
 

2. ὖṓὖ ṓὖ ṓ     l2, ὖṓὖ/ὖ, ὖ/ὗ, ὗ/Ὑ 
ὖṓὗ ṓ ὖṓὖ ṓὗ  

 
3. ὖṓ ὖṓὗ ṓ ὖṓὖ ṓὗ    1,2 H.S. 

 
4. ὖṓὗ ṓ ὖṓὖ ṓὗ ṓ   l2, ὖṓὗ/ὖ, 

ὖṓὖ ṓὗ ṓὗ ṓ ὖṓὗ ṓὗ   ὖṓὖ ṓὗ/ὗ, ὗ/Ὑ 
 

5. ὖṓ ὖṓὖ ṓὗ ṓὗ ṓ   3,4 H.S. 
ὖṓὗ ṓὗ  

 
6. ὖṓὖ ṓὗ ṓὗ     lD5, ὖ/ὖ, ὗȾὗ 

 
7. ὖṓὖ ṓὗ ṓὗ ṓ    l1, ὖṓὖ ṓὗ ṓὗ/ὖ 

0ṓ0ṓ 0ṓ0ṓ1 ṓ1    0ṓ0/1 
 

8. ὖṓὖ ṓ ὖṓὖ ṓὗ ṓὗ    6,7 M.P. 
 

9. ὖṓὖ ṓ ὖṓὖ ṓὗ ṓὗ ṓ  l1, ὖṓὖ/ὖ, 
ὖṓὖ ṓὗ ṓὗ ṓ ὖṓὗ ṓὗ ṓ ὖṓὖ ṓὗ ṓὗ/ὗ, 

ὖṓὖ ṓ ὖṓὗ ṓὗ    ὖṓὗ ṓὗ/Ὑ 

10. ὖṓὖ ṓὗ ṓὗ ṓ ὖṓὗ ṓὗ ṓ 8,9 M.P. 
ὖṓὖ ṓ ὖṓὗ ṓὗ  

 

11. ὖṓ ὖṓὖ ṓ ὖṓὗ ṓὗ    5,10 H.S. 

 

12. ὖṓὖ ṓ ὖṓὗ ṓὗ ṓ ὖṓὗ ṓὗ  lD5 ὖ/ὖ, ὖṓὗ ṓὗ/ὗ 
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13. ὖṓ ὖṓὗ ṓὗ      11,12 H.S.  (p. 258 - 260) 

 

Rem. 4.34 ὖṓ ὗ Ö ὖ (which is equivalent to ὖṓ ὖ Ö ὗ  in classical logic) is the instance of ὖṓ

ὗṓὖ ṓὖ of l1 when rewritten with disjunction.   (p. 260) 

 
lD7 ὖṓ ὗṓὙ ṓ ὗṓ ὖṓὙ  

1. ὖṓ ὗṓὙ ṓ     l2, ὖ/ὖ, ὗṓὙ/ὗ, Ὑ/Ὑ 

ὗṓὙ ṓὙ ṓ ὖṓὙ  

 

2. ὗṓ ὗṓὙ ṓὙ     lD6, ὗ/ὗ, Ὑ/Ὑ 

 

3. ὗṓ ὗṓὙ ṓὙ ṓ    l2, ὗ/ὖ, ὗṓὙ ṓὙ/ὗ 

ὗṓὙ ṓὙ ṓ ὖṓὙ ṓ   ὖṓὙ/Ὑ 

1ṓ 0ṓ2  

 

4. ὗṓὙ ṓὙ ṓ ὖṓὙ ṓ   3,2 M.P. 

ὗṓ ὖṓὙ  

 

5. ὖṓ ὗṓὙ ṓ ὗṓ ὖṓὙ    1,4 H.S.   (p, 260) 

 
Rem. 4.35 An implication formula ὖṓὗ allows us to construct an instance, ὊṓὋ and thence 

deduce Ὃ from Ὂ by means of M.P. For some formulae ὖṓὗ, this usage is so common 

that it is convenient to introduce a respective derived rule.   (p. 262) 

 
Con. (Contraposition) From ͯ ὖṓ ὗͯ infer ὗṓὖ. 

1. ὖͯṓ ὗͯ      CPA 

 

2. ὖͯṓ ὗͯ ṓ ὗṓὖ    l3, ὖ/ὖ,  ὗ/ὗ 

 

3. ὗṓὖ      2,1 M.P   (p. 262) 

 
LSimp. (Left Conjunct Simplification) From ὖ ω ὗ infer ὖ. 

1. ͯ ὖͯṓ ὗͯ ṓ ὗͯ     CPA rewritten from ὖɆὗ  

 

2. ὖͯṓ ὖͯṓ ὗͯ ṓ ὗͯ     lD6, ͯ ὖ/ὖ, ͯ ὗ/ὗ 

 

3. ὖͯṓ ὗͯ ṓ ὗͯ ṓ    lD3, 0ͯṓ 1ͯ ṓ 1ͯ/0 

ͯͯ ὖͯṓ ὗͯ ṓ ὗͯ  

 

4. ὖͯṓͯͯ ὖͯṓ ὗͯ ṓ ὗͯ    2,3 H.S. 
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5. ͯ ὖͯṓ ὗͯ ṓ ὗͯ ṓὖ    4 Con. 

 

6. ὖ       1,5 M.P 

 
RSimp. (Right Conjunct Simplification) From ὖ ω ὗ infer ὗ. 

 

1. ͯ ὖͯṓ ὗͯ ṓ ὗͯ     CPA rewritten from ὖɆὗ  

 

2. ὗͯṓ ὖͯṓ ὗͯ ṓ ὗͯ     l1, ͯ ὗ/ὖ, ͯ ὖṓ ὗͯ/ὗ 

 

3. ὖͯṓ ὗͯ ṓ ὗͯ ṓ    lD3, ὖͯṓ ὗͯ ṓ ὗͯ/ὖ 

ͯͯ ὖͯṓ ὗͯ ṓ ὗͯ  

 

4. ὗͯṓͯͯ ὖͯṓ ὗͯ ṓ ὗͯ    2,3 H.S. 

 

5.  ͯ ὖͯṓ ὗͯ ṓ ὗͯ ṓὗ    4 Con. 

 

6. ὗ       1,5 M.P.  (p. 262) 

 

Rem. 4.36 Valid inferences using YƭŜŜƴŜΩǎ ŀƴŘ .ƻŎƘǾŀǊΩǎ όƛƴǘŜǊƴŀƭ ŀƴŘ ŜȄǘŜǊƴŀƭύ ŎƻƴƴŜŎǘƛǾŜǎ ƘŀǾŜ 

corresponding derivations in lA provided that we use the l definitions for rewriting 

formulae containing such connectives. 

 
E.g. 4.37 ὖṓ ὖ is a tautology, therefore we would expect ͯ ὖṓ ὖͯ ṓͯὖṓ ὖͯ, which 

expresses ὖṓ ὖ in l as a theorem of lA. However this is an instance of lD4 with 

ͯὖṓ ὖͯ/ὖ.        (p. 264) 

 
E.g. 4.38 ὖ 
 ὖṓ ὗ 
 Ḉὗ of .ƻŎƘǾŀǊΩǎ ŜȄǘŜǊƴŀƭ ǎȅǎǘŜƳ "  is also valid in lA. See below: 
 

1. ὖ      CPA 
 

2. ͯὖṓ ὖͯ ṓͯὗṓ ὗͯ    CPA rewritten from ὖṓ ὗ  
 

3. ὗṓ ὗͯ ṓ ὖṓ ὖͯ    2 Con. 

 

4. ὗṓ ὗͯ ṓ ὖṓ ὖͯ ṓ   lD7, ὗṓ ὗͯ/ὖ, ὖ/ὗ, ͯ ὖ/Ὑ 

ὖṓ ὗṓ ὗͯ ṓ ὖͯ  

 

5. ὖṓ ὗṓ ὗͯ ṓ ὖͯ    4,3 M.P. 
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6. ὗṓ ὗͯ ṓ ὖͯ    5,1 M.P. 

 

7. ͯͯ ὗṓ ὗͯ ṓ ὗṓ ὗͯ    lD2, ὗṓ ὗͯ/ὖ 

 

8. ͯͯ ὗṓ ὗͯ ṓ ὖͯ    7,6 H.S. 

 

9. ὖṓͯὗṓ ὗͯ     8 Con. 

 

10. ͯ1ṓ 1ͯ     9,1 M.P. 

 

11. ὗͯṓ ὗṓ ὗͯ     l1, ͯ ὗ/ὖ, ὗ/ὗ 

 

12. ὗṓ ὗͯ ṓͯͯ ὗṓ ὗͯ    lD3, ὗṓ ὗͯ/ὖ  

 

13. ὗͯṓͯͯ ὗṓ ὗͯ     11,12 H.S. 

 

14. ͯὗṓ ὗͯ ṓὗ    13 Con. 

 

15. ὗ      14,10 M.P.  (p. 264) 

 
E.g. 4.39 ὖ 

 ὖṓ ὗ 

 Ḉὗ is valid in ἕἡ. 

  

 ὖṓ ὗ is equivalent to ͯὖ Ö ὗ in l, which is equivalent to ͯ ὖṓὗ ṓὗ. See the 

following derivation which establishes the validity of the argument above: 

 

1. ὖ      CPA 

 

2. ὖͯṓὗ ṓὗ     CPA 

 

3. ὖṓ ὗͯṓὖ     l1, ὖ/ὖ, ͯ ὗ/ὗ 

 

4. ὗͯṓὖ     3,1 M.P. 

 

5. ὖṓͯͯ ὖ     lD3, ὖ/ὖ 

 

6. ὗͯṓͯͯ ὖ     4,5 H.S. 

 

7. ὖͯṓὗ     6 Con. 

 

8. ὗ      2,7 M.P 

 

This derivation justifies Disjunctive Syllogism in l.   (p. 266) 
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E.g. 4.40 ὖ 
 ὖṓ ὗ 
 Ḉὗ is valid in Ἄἓ. 
 
 The second premise above is equivalent to ὖͯ Ö ὗ Ɇ ὖ Ö ͯὖɆὗ Ö ͯὗ  in l. The 

derivation of the argument is as follows: 

 

1. ὖ      CPA 

 

2. ὖͯ Ö ὗ Ɇ ὖ Ö ͯὖɆὗ Ö ͯὗ   CPA 

 

3. ὖͯ Ö ὗ      2 LSimp. 

 

4. Χ  

 

By substituting ὖͯṓὗ ṓὗ for ͯ ὖ Ö ὗ, the rest of the proof is identical to that of  

the ἕἡ proof in e.g. 4.39 above.      (p. 266) 

 
Sub. (Substitution) From  ὖṓὗ, ὗṓὖ and a formula Ὑ that contains ὖ as a sub-formula, infer any 

formula Ὑᶻ that is the result of replacing one or more occurrences of ὖ in Ὑ with ὗ. 

CǊƻƴƘǀŦŜǊΩǎ Proof Strategy: 

¶ Structural Induction: If we can derive reciprocal formulae ὖṓὗ and ὗṓὖ, then given any 

formula Ὑ that contains ὖ we can derive both ὙṓὙ  and Ὑ ṓὙ, where Ὑ  is identical to 

Ὑ except for one occurrence of ὖ being replaced by ὗ. It follows then that if we can derive Ὑ,  

we can also derive Ὑ  by Modus Ponens and vice versa. 

 

¶ Induction on number of replacements: We can then replace more than one occurrence of ὖ 

in Ὑ with ὗ to obtain any Ὑᶻ by replacing one occurrence at a time.  (p. 268) 

 
E.g. 4.41 Here  Fronhöfer shows how to derive both ὙṓὙ  and Ὑ ṓὙ by deriving larger and 

larger conditionals reflecting the way that Ὑ has been constructed from ὖ and hence the 

way that Ὑ  is constructed from ὗ. 

 Let Ὑ be the formula: 

 ͯὃṓὖ ṓ ὃṓὄ ṓὅ 

 where there is an occurrence of ὖ which we want to replace by ὗ. Then Ὑ must be 

constructed from ὖ stepwise by combining ὖ with other formulae (left list below) and 

Ὑ  must be constructed from ὗ stepwise as follows (right list below): 
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 ὖ     ὗ 
 
 ὃṓὖ    ὃṓὗ 
 
 ͯὃṓὖ    ͯὃṓὗ  
 
 ͯὃṓὖ ṓ ὃṓὄ   ͯὃṓὗ ṓ ὃṓὄ  
 
 ͯὃṓὖ ṓ ὃṓὄ ṓὅ ͯὃṓὗ ṓ ὃṓὄ ṓὅ 
  
 Next Fronhöfer shows how to derive the reciprocal conditionals that pair off the 

formulae from each row of the two lists above i.e. 

 ὖṓὗ and 
 ὗṓὖ 
 
 ὃṓὖ ṓ ὃṓὗ  and 
 ὃṓὗ ṓ ὃṓὖ 
 
 ͯὃṓὖ ṓͯὃṓὗ  and 
 ͯὃṓὗ ṓͯὃṓὖ 
 
 ͯὃṓὖ ṓ ὃṓὄ ṓ ͯὃṓὗ ṓ ὃṓὄ  and 
 ͯὃṓὗ ṓ ὃṓὄ ṓ ͯὃṓὖ ṓ ὃṓὄ  
 
 ͯὃṓὖ ṓ ὃṓὄ ṓὅ ṓ ͯὃṓὗ ṓ ὃṓὄ ṓὅ and 

ͯὃṓὗ ṓ ὃṓὄ ṓὅ ṓ ͯὃṓὖ ṓ ὃṓὄ ṓὅ 
 
 where the last pair of conditionals are 

 ὙṓὙ  and 
 Ὑ ṓὙ 
 
 as per FronhöferΩǎ example.      (p. 270) 
 
Proof: 

¶ The derivability of ὖṓὗ and ὗṓὖ is given in the statement of the rule Sub. (Substitution). 

 

¶ For each pair of conditionals ὛṓὛ and ὛṓὛ in the list of paired conditionals, the 

following pair ὝṓὝ and ὝṓὝ have Ὓ as an immediate component of Ὕ, and Ὕ results 

from replacing one occurrence of 3 in 4 with 3. 

 

¶ Given this general pattern for constructing the target formulae, we need only show that, 

given any formulae ὛṓὛ and ὛṓὛ, there is a way to derive ὝṓὝ and ὝṓὝ, 

where Ὓ is an immediate component of Ὕ, and Ὕ is the result of replacing one occurrence 

of Ὓ in Ὕ with Ὓ. 

 

¶ There are three possible cases reflecting the structure of Ὕ (and hence also Ὕ). 
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Case 1:  Ὕ is ὛṓὟ for some formula Ὗ, and  Ὕ is ὛṓὟ. Given ὛṓὛ we can derive 

ὝṓὝ  i.e. ḳ ὛṓὟ ṓ ὛṓὟ  as follows: 

 ὲ ὛṓὛ      given 

 ὲ + 1  ὛṓὛ ṓ ὛṓὟ ṓ ὛṓὟ   l2, Ὓ/ὖ, Ὓ/ὗ, Ὗ/Ὑ 

 ὲ + 2  ὛṓὟ ṓ ὛṓὟ     ὲ, ὲ + 1 M.P. 

 ὝṓὝ, which is ὛṓὟ ṓ ὛṓὟ , is similarly derived from ὛṓὛ. 

          (p. 270) 

Case 2:  Ὕ is ὟṓὛ for some formula Ὗ, and  Ὕ is ὟṓὛ. 

 ὲ ὛṓὛ      given 

 ὲ + 1 ὟṓὛ ṓ ὛṓὛ ṓ ὟṓὛ   l2, Ὗ/ὖ, Ὓ/ὗ, Ὓ/Ὑ 

  ὲ + 2 ὟṓὛ ṓ ὛṓὛ ṓ ὟṓὛ ṓ lD7, ὟṓὛ/ὖ, 
   ὛṓὛ ṓ ὟṓὛ ṓ ὟṓὛ   ὛṓὛ/1, ὟṓὛ/Ὑ 
 

 ὲ + 3 ὛṓὛ ṓ ὟṓὛ ṓ ὟṓὛ   ὲ + 1, ὲ +2 M.P. 

 ὲ + 4 ὟṓὛ ṓ ὟṓὛ  i.e. ḳ ὝṓὝ  ὲ, ὲ + 3 M.P. 

  4ṓ4, which is 5ṓ3 ṓ 5ṓ3 , is similarly derived from 3ṓ3. 
           (p. 272) 
 

Case 3: Ὕ is ͯ Ὓ and Ὕ is ͯ Ὓ. 

 ὲ ὛṓὛ      given 

 ὲ + 1 ͯͯ ὛṓὛ     lD2, Ὓ/ὖ 

 ὲ + 2 ͯͯ ὛṓὛ     ὲ, ὲ + 1 H.S. 

 ὲ + 3 Ὓṓͯͯ Ὓ     lD3, Ὓ/ὖ 

 ὲ + 4 ͯͯ Ὓṓͯͯ Ὓ     ὲ + 2, ὲ + 3 H.S. 

 ὲ + 5 Ὓͯṓ Ὓͯ  i.e. ḳ ὝṓὝ    ὲ + 4 Con. 

 ὝṓὝ, which is ͯὛṓ Ὓͯ, is similarly derived from ὛṓὛ.  (p. 272) 

 
E.g. 4.42  We can use Sub. to derive ͯ ὗͯṓ ὗͯ ṓͯͯ ὗ ṓὗ as follows: 

1. ὗṓ ὗͯ ṓὗ ṓὗ    l4, ὗ/ὖ 

 

2. ὗṓͯͯ ὗ      lD3, ὗ/ὖ 

 

3. ͯͯ ὗṓὗ      lD2, ὗ/ὖ 



92 
 

 © philosophy.org.za  
 

 

4. ͯͯ ὗṓ ὗͯ ṓͯͯ ὗ ṓὗ   1,2,3 Sub. 

On line 4, two occurrences of ὗ on line 1 were replaced with ͯͯ ὗ. (p. 272) 

 
M.T. (Modus Tollens) From ὗṓὖ and ͯ ὖ derive ͯ ὗ. 

ά ὖͯ    given 

ὲ  ὗṓὖ   given 

ὲ + 1 ͯͯ ὗṓὗ   lD2, ὗ/ὖ 

ὲ + 2 ͯͯ ὗṓὖ   ὲ, ὲ + 1 H.S. 

ὲ + 3 ὖṓͯͯ ὖ   lD3 ὖ/ὖ 

ὲ + 4 ͯͯ ὗṓͯͯ ὖ  ὲ + 2, ὲ + 3 H.S. 

ὲ + 5 ὖͯṓ ὗͯ   ὲ + 4, Con. 

ὲ + 6 ὗͯ    ὲ + 5, ά M.P.    (p. 274) 

 
D.N. (Double Negation) From any formula Ὑ that contains ὖ as a constituent, infer any formula Ὑᶻ 

that is the result of replacing one or more occurrences of ὖ in Ὑ with ͯͯ ὖ and vice versa. 

Tran. (Transposition) For any formula Ὑ that contains ὖṓ ὗṓὛ as a sub-formula, infer any 

formula Ὑᶻ that is the result of replacing one or more occurrences of ὖṓ ὗṓὛ in Ὑ with ὗṓ

ὖṓὛ. 

GCon. (Generalised Contraposition) For any formula Ὑ that contains ὖṓὗ as a sub-formula, infer 

any formula Ὑᶻ that is the result of replacing one or more occurrences of ὖṓὗ in 2 with ὗͯṓ ὖͯ 

and vice versa. 

Proofs: 

¶ D.N. follows from Sub. and lD2 as well as lD3. 

 

¶ Tran. follows from Sub. and lD7. 

 

¶ GCon. follows from Sub., l3 and the fact that every formula of the form: 

  ὖṓὗ ṓ ὗͯṓ ὖͯ 

is a theorem of lA, thus: 

1. ͯͯ ὖṓͯͯ ὗ ṓ ὗͯṓ ὖͯ  l3, ͯ ὖ/ὖ, ͯ ὗ/ὗ 

 

2. ὖṓὗ ṓ ὗͯṓ ὖͯ   1 D.N. (twice)   (p. 274) 
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lD8 ͯ ὖṓὗ ṓὖ 

1. ὖͯṓ ὖṓὗ     lD1, ὖ/ὖ, ὗ/ὗ 

 

2. ὖͯṓͯͯ ὖṓὗ    1 D.N. 

 

3. ͯὖṓὗ ṓὖ    2 Con.    (p. 276) 

 
GHS (Generalised Hypothetical Syllogism) From ὖṓ ὖṓỄ ṓ ὖ ṓὖ ȣ  and ὖṓὗ, 

infer ὖṓ ὖṓỄṓὖ ṓὗȣ  

Base case: ὲ = 3 
 
We derive ὖṓ ὖṓὗ  from ὖṓ ὖṓὖ  and ὖṓὗ 
 

1. ὖṓ ὖṓὖ      given 
 

2. ὖṓὗ      given 
 

3. ὖṓὖ ṓ ὖṓὗ ṓ ὖṓὗ   l2, ὖ/ὖ, ὖ/ὗ, ὗ/Ὑ 
 

4. ὖṓὗ ṓ ὖṓὖ ṓ ὖṓὗ   3 Tran. 
 

5. ὖṓὖ ṓ ὖṓὗ     2,4 M.P. 
 

6.  ὖṓ ὖṓὗ      1,5 H.S.   (p. 276) 
 
Hypothesis: 

From ὖṓ ὖṓỄṓ ὖ ṓὖ ȣ  and ὖ ṓὗ 

infer ὖṓ ὖṓỄṓ ὖ ṓὗ ȣ  

Induction step: 

Step ὲ - 1 to ὲ: for arbitrary ὲ > 3, the derivation begins as 

1. ὖṓ ὖṓ ὖṓỄ ṓ ὖ ṓὖ ȣ  given 

 

2. ὖṓὗ      given 

 

3. ὖ ṓὖ ṓ ὖṓὗ ṓ ὖ ṓὗ  l2, ὖ /ὖ, ὖ/ὗ, ὗ/Ὑ 

 

4. ὖṓὗ ṓ ὖ ṓὖ ṓ ὖ ṓὗ  3 Tran. 

 

5. ὖ ṓὖ ṓ ὖ ṓὗ    4,2 M.P.  (p. 278) 

 

The formulae on lines 1 and 5 are, respectively, instances of the premises: 
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ὖṓ ὖṓ ὖṓỄṓ ὖ ṓὖ ȣ  and ὖ ṓὗof our induction hypothesis with 

 

¶ ὖ ṓὖ in place of ὖ  and 

 

¶ ὖ ṓὗ in place of ὗ and 

 

¶ ὖ in place of 0 for 1  Ὥ  ὲ - 2 

 
Fronhöfer completes the derivation with the instantiated conclusion of the induction hypothesis: 

6. ὖṓ ὖṓ ὖṓỄ ṓ ὖ ṓὗȣ  1,5 I.H., ὖ ṓὖ/ὖ ,  

ὖ ṓὗ/  ὗ, 

ὖ/ ὖ for 1  Ὥ  ὲ - 2 

            (p. 278) 

 
GMP (Generalised Modus Ponens) From ὖṓ ὖṓỄṓ ὖ ṓὖ ȣ  and one of the 

antecedents ὖ, 1 Ὥ ὲ ς 1, infer the conditional that results from deleting ὖ, the conditional 

hook following 0, and associated parentheses. 

Justification 

¶ By repeated application of Tran. the antecedents 0ȟȣȢ0  can be permuted in any order. 

 

¶ Specifically, 0 can be moved to the beginning of the formula, leaving the order of the other 

antecedents unchanged. 

 

¶ Then a single application of M.P. will produce the desired formula with 0 removed. (p. 278) 

 
Constructive Dilemma 

In classical logic the following argument is valid: 

 ὖṓὗ 
 ὖͯṓὗ 
 Ḉὗ 
 
(cyan rows below) and the corresponding rule is derivable in CLA. However the inference is not valid 

in l if both ὖ and ὗ have the value ṩ (magenta rows): 
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0 ṓ 1  ͯ   0 ṓ 1  1 
T  4 T  F T 4 T 4 
T ṩ ṩ  F T 4 ṩ ṩ 
T  & F  F T 4 F & 
ṩ  4 T ṩ ṩ 4 T 4 
ṩ  4 ṩ ṩ ṩ 4 ṩ ṩ 
ṩ ṩ F ṩ ṩ ṩ F & 
F  4 T 4 F 4 T 4 
F  4 ṩ 4 F ṩ ṩ ṩ 
F  4 F 4 F & F & 

 

Modified Constructive Dilemma 

The argument below, however is valid in l: 

 ὖṓὗ 
 ὖṓ ὖͯ ṓὗ 
 Ḉὗ 
 
and the corresponding rule is derivable in lA, green rows below. 

 
0  ṓ 1 0  ṓ  ͯ 0  ṓ 1  1 

T T T T F F T T T T 
T ṩ ṩ T F F T T ṩ ṩ 
T F F T F F T T F F 
ṩ T T ṩ T ṩ ṩ T T T 
ṩ T ṩ ṩ T ṩ ṩ ṩ ṩ ṩ 
ṩ ṩ F ṩ T ṩ ṩ F F F 
F T T F T T F T T T 
F T ṩ F T T F ṩ ṩ ṩ 
F T F F T T F F F F 

 

MCD (Modified Constructive Dilemma) From ὖṓὗ  and ὖṓ ὖͯ ṓὗ, infer ὗ. 

1. ὖṓὗ      given 

 

2. ὖṓ ὖͯ ṓὗ     given 

 

3. ὖṓὗ ṓ ὗṓ ὖͯ ṓ ὖṓ ὖͯ   l2, ὖ/ὖ, ὗ/ὗ, ͯ ὖ/Ὑ 

 

4. ὗṓ ὖͯ ṓ ὖṓ ὖͯ    3,1 M.P. 

 

5. ὗṓ ὖͯ ṓὗ     4,2 H.S. 

 

6. ὗṓ ὗͯ ṓ ὗͯṓ ὖͯ ṓ ὗṓ ὖͯ  l2, ὗ/ὖ, ͯ ὗ/ὗ, ͯ ὖ/Ὑ 

 

7. ὗͯṓ ὖͯ ṓ ὗṓ ὗͯ ṓ ὗṓ ὖͯ  6 Tran. 
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8. ὗͯṓ ὖͯ     1 GCON 

 

9. ὗṓ ὗͯ ṓ ὗṓ ὖͯ    7,8 M.P. 

 

10. ὗṓ ὗͯ ṓὗ     9,5 H.S. 

 

11. ὗṓ ὗͯ ṓὗ ṓὗ    l4, ὗ/ὖ 

 

12. ὗ      11,10 M.P. 

 

Rem 4.43 MCD can also be expressed as: from ὖṓὗ and ͯ ὖṓὗ, infer ὗ.  (p. 282) 

 

DE (Disjunction Elimination) From ὖ Ö ὗ, ὖṓὙ and ὗṓὙ, infer Ὑ. 

1. ὖṓὗ ṓὗ     given rewritten from ὖ Ö ὗ) 

 

2. ὖṓὙ      given 

 

3. ὗṓὙ      given 

 

4. ͯὖṓὗ ṓὖ     lD8, ὖ/ὖ, ὗ/ὗ 

 

5.  ͯ ὖṓὗ ṓὙ     4,2 H.S. 

 

6. ͯͯ ὖṓὗ ṓͯͯ ὗ ṓ ὗͯṓͯὖṓὗ  l3, ͯ ὖṓὗ /ὖ, ͯ ὗ/ὗ 

 

7. ὖṓὗ ṓὗ ṓ ὗͯṓͯὖṓὗ   6 D.N. (twice) 

 

8. ὖṓὗ ṓὗ ṓ ὗͯṓὖ   7,4 GHS 

 

9. ὗͯṓὖ ṓ ὖṓ ὖͯ ṓ ὗͯṓ ὖͯ  l2, ͯ ὗ/ὖ, ὖ/ὗ, ͯ ὖ/Ὑ 

 

10. ὗͯṓ ὖͯ ṓ ὖṓὗ     l3, ὗ/ὖ, ὖ/ὗ 

 

11. ὗͯṓὖ ṓ ὖṓ ὖͯ ṓ ὖṓὗ   9,10 GHS 

 

12. ὖṓὗ ṓ     lD6, ὖṓὗ/ὖ 

ὖṓὗ ṓͯὖṓὗ ṓͯὖṓὗ   ͯὖṓὗ /ὗ 

 

13. ὗͯṓὖ ṓ ὖṓ ὖͯ ṓ   11,12 GHS 

ὖṓὗ ṓͯὖṓὗ ṓͯὖṓὗ  

 

14. ὗͯṓὖ ṓ ὖṓ ὖͯ ṓ   13,5 GHS 
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ὖṓὗ ṓͯὖṓὗ ṓὙ  

 

15. ὖṓὗ ṓὗ ṓ ὖṓ ὖͯ ṓ  14,8 H.S. 

ὖṓὗ ṓͯὖṓὗ ṓὙ  

 

16. ὖṓὗ ṓὗ ṓ ὖṓὗ ṓ   15 Tran. 

ͯὖṓὗ ṓ ὖṓ ὖͯ ṓὙ  

 

17. ὖṓὗ ṓͯὖṓὗ ṓ   16 Tran. 

ὖṓὗ ṓὗ ṓ ὖṓ ὖͯ ṓὙ  

 

18. ὖṓὗ ṓͯὖṓὗ ṓ   17. Tran. 

ὖṓ ὖͯ ṓ ὖṓὗ ṓὗ ṓὙ  

 

19. ὖṓὗ ṓ ὖṓὗ ṓὗ ṓὗ   lD6, ὖṓὗ/ὖ, ὗ/ὗ 

 

20. ὖṓὗ ṓ ὖṓὗ ṓὗ ṓὙ   19,3 GHS 

 

21. ὖṓὗ ṓὗ ṓὙ ṓ   l1, ὖṓὗ ṓὗ ṓὙ/ὖ 

ὖṓ ὖͯ ṓ ὖṓὗ ṓὗ ṓὙ   ὖṓ ὖͯ/ὗ 

 

22. ὖṓὗ ṓ ὖṓ ὖͯ ṓ   21,20 H.S. 

ὖṓὗ ṓὗ ṓὙ  

 

23. ὖṓ ὖͯ ṓ ὖṓὗ ṓὗ ṓὙ  18,22 MCD 

 

24. Ὑṓ ὖṓὗ ṓὗ ṓὙ    l1, Ὑ/ὖ, ὖṓὗ ṓὗ/ὗ 

 

25. ὖṓ ὖṓὗ ṓὗ ṓὙ    24,2 H.S. 

 

26. ὖṓὗ ṓὗ ṓὙ    23,25 MCD 

 

27. Ὑ      26,1 M.P.  (p. 282-284) 

 

DC (Disjunctive Consequence) From ὖṓὙ and ὗṓὙ, infer ὖ Ö ὗ ṓὙ. 

According to Fronhöfer this is implicit in lines 2 - 26 of the previous derivation. 

lD9: ὖ Ö ὗ ṓ ὗ Ö ὖ can be rewritten as ὖṓὗ ṓὗ ṓ ὗṓὖ ṓὖ  

1. ὖṓ ὗṓὖ ṓὖ    l1, ὖ/ὖ, ὗṓὖ/ὗ 

 

2. ὗṓ ὗṓὖ ṓὖ    lD6, ὗ/ὖ, ὖ/ὗ 

 

3. ὖṓὗ ṓὗ ṓ ὗṓὖ ṓὖ  1,2 DC   (p. 284) 
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lD10 ὖṓὗ Ö ὗṓὖ can be rewritten as ὖṓὗ ṓ ὗṓὖ ṓ ὗṓὖ 

1. ὖṓὗ ṓ ὗṓὖ ṓ    l2, ὖṓὗ/ὖ 

ὗṓὖ ṓὖ ṓ ὖṓὗ ṓὖ   ὗṓὖ/ὗ, ὖ/Ὑ 

 

2. ὖṓὗ ṓὗ ṓ ὗṓὖ ṓὖ  lD9, ὖ/ὖ, ὗ/ὗ 

 

3. ὗṓὖ ṓὖ ṓ ὖṓὗ ṓὗ   lD9, ὗ/ὖ, ὖ/ὗ 

 

4. ὖṓὗ ṓ ὗṓὖ ṓ    1,2,3 Sub. 

ὖṓὗ ṓὗ ṓ ὖṓὗ ṓὖ  

 

5. ὖṓὗ ṓ ὗṓὖ ṓ   l2, ὖṓὗ ṓ ὗṓὖ/ὖ, 

ὖṓὗ ṓὗ ṓ ὖṓὗ ṓὖ ṓ  ὖṓὗ ṓὗ ṓ 

ὖṓὗ ṓὗ ṓ ὖṓὗ ṓὖ ṓ  ὖṓὗ ṓὖ/ὗ, 

ὗṓ ὖṓὗ ṓ ὗṓὖ ṓ   ὗṓ ὖṓὗ ṓ 

ὖṓὗ ṓ ὗṓὖ ṓ   ὗṓὖ/Ὑ 

ὗṓ ὖṓὗ ṓ ὗṓὖ  

 

6. ὖṓὗ ṓὗ ṓ ὖṓὗ ṓὖ ṓ  5,4 M.P. 

ὗṓ ὖṓὗ ṓ ὗṓὖ ṓ 

ὖṓὗ ṓ ὗṓὖ ṓ 

ὗṓ ὖṓὗ ṓ ὗṓὖ  

 

7. ὗͯṓͯὖṓὗ ṓ ὖͯṓͯὖṓὗ ṓ lD4, ὗͯṓͯὖṓὗ ṓ 

ὗͯṓͯὖṓὗ ṓ ὖͯṓͯὖṓὗ  ὖͯṓͯὖṓὗ /ὖ 

 

8. ὗͯṓͯὖṓὗ ṓ ὖͯṓͯὖṓὗ ṓ 7 Tran. 

ὖͯṓ ὗͯṓͯὖṓὗ ṓͯὖṓὗ  

 

9. ὗͯṓͯὖṓὗ ṓͯὖṓὗ ṓ  lD9, ͯ ὗ/ὖ, ͯ ὖṓὗ /ὗ 

ͯὖṓὗ ṓ ὗͯ ṓ ὗͯ  

 

10. ὗͯṓͯὖṓὗ ṓ ὖͯṓͯὖṓὗ ṓ 8,9 GHS 

ὖͯṓ ͯὖṓὗ ṓ ὗͯ ṓ ὗͯ  

 

11. ὗͯṓͯὖṓὗ ṓ ὖͯṓͯὖṓὗ ṓ 10 Tran. 

ͯὖṓὗ ṓ ὗͯ ṓ ὖͯṓ ὗͯ  

 

12. ὖṓὗ ṓὗ ṓ ὖṓὗ ṓὖ ṓ  11 GCON (four times) 

ὗṓ ὖṓὗ ṓ ὗṓὖ  

 

13. ὖṓὗ ṓ ὗṓὖ ṓ    12,4 H.S. 

ὗṓ ὖṓὗ ṓ ὗṓὖ  
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14. ὗṓ ὖṓὗ ṓ    13 Tran. 

ὖṓὗ ṓ ὗṓὖ ṓ ὗṓὖ  

 

15. ὗṓ ὖṓὗ      l1, ὗ/ὖ, ὖ/ὗ 

 

16. ὖṓὗ ṓ ὗṓὖ ṓ ὗṓὖ  14,15 M.P.   (p. 286) 

 
lD11: ὖṓ ὖṓ ὖṓὗ ṓ ὖṓ ὖṓὗ  

1. Ḑὖṓ ὖṓὗ      lD1, ὖ/ὖ, ὗ/ὗ 

 

2. ὖṓ ὖͯ ṓ     l2, ὖ/ὖ, ͯ ὖ/ὗ, ὖṓὗ/Ὑ 

ὖͯṓ ὖṓὗ ṓ ὖṓ ὖṓὗ  

 

3. ὖṓ ὖͯ ṓ ὖṓ ὖṓὗ    1,2 GMP 

 

4. ὖṓ ὖͯ ṓ ὖṓ ὖṓὗ ṓ  l2, ὖṓ ὖͯ/ὖ, 

ὖṓ ὖṓὗ ṓὖ ṓ ὖṓ ὖͯ ṓὖ  ὖṓ ὖṓὗ /ὗ, ὖ/Ὑ 

 

5. ὖṓ ὖṓὗ ṓὖ ṓ ὖṓ ὖͯ ṓὖ 4,3 M.P. 

 

6. ὖṓ ὖͯ ṓὖ ṓὖ    l4, ὖ/ὖ 

 

7. ὖṓ ὖṓὗ ṓὖ ṓὖ   5,6 H.S. 

 

8. ὖṓ ὖṓὗ ṓὖ ṓὖ ṓ   lD9, ὖṓ ὖṓὗ /ὖ, ὖ/ὗ 

ὖṓ ὖṓ ὖṓὗ ṓ ὖṓ ὖṓὗ  

 

9. ὖṓ ὖṓ ὖṓὗ ṓ ὖṓ ὖṓὗ  8,7 M.P.  (p. 288) 

 

 

C.I. (Conjunction Introduction) From ὖ and ὗ, infer ὖɆὗ. 

 

1. ὖ      CPA 

 

2. ὗ      CPA 

 

3. ͯͯ ὖ      D.N. 

 

4. ͯͯ ὖṓ ὖͯṓ ὗͯ     lD1, ͯ ὖ/ὖ, ͯ ὗ/ὗ 

 

5. ὖͯṓ ὗͯ     3,4 M.P. 

 

6. ὖͯṓ ὗͯ ṓ ὖͯṓ ὗͯ ṓ ὗͯ ṓ ὗͯ lD6, ͯ ὖṓ ὗͯ/ὖ, ͯ ὗ/ὗ 
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7. ὖͯṓ ὗͯ ṓ ὗͯ ṓ ὗͯ   5,6 M.P. 

 

8. ͯͯ ὗṓͯ ὖͯṓ ὗͯ ṓ ὗͯ    7 GCON 

 

9. ͯͯ ὗ      2 D.N. 

 

10. ͯ ὖͯṓ ὗͯ ṓ ὗͯ     8,9 M.P. rewritten from ὖɆὗ  

          (p. 288) 

 

Rem 4.44 Note ὖṓ ὖṓὗ ṓ ὖṓὗ  does not hold in l, see magenta row below. However 

it does correspond to (left) contraction in subsequent systems. 

 

ὖ ṓ ὖ ṓ ὗ  ṓ ὖ ṓ ὗ  
T T T T T T T T T 
T ṩ T ṩ ṩ T T ṩ ṩ 
T F T F F T T F F 
ṩ T ṩ T T T ṩ T T 
ṩ T ṩ T ṩ T ṩ T ṩ 
ṩ T ṩ ṩ F ṩ ṩ ṩ F 
F T F T T T F T T 
F T F T ṩ T F T ṩ 
F T F T F T F T F 

 

Rem 4.45 Note also, ὖͯṓὖ ṓὖ does not hold in l, see magenta row below. However it does 

correspond to (right) contraction in subsequent systems. 

 

 ͯ ὖ ṓ ὖ ṓ ὖ 
F T T T T T 
ṩ ṩ T ṩ ṩ ṩ 
T F F F T F 

 

Rem 4.46 The deduction theorem 

  if ᷾ה Ὂ ṲὋ, then הṲὊṓὋ 

 does not hold in lA. 

E.g. 4.47 Whenever ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ  is true in l then so is Ὑ, however ὖɆ ὖṓ

ὗ Ɇὖṓ ὗṓὙ ṓὙ is not a l tautology. 

 Proof: Ὑ may be derived from ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ  as follows 

1. ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ   CPA 

 

2. ὖ      1 LSimp. 

 

3. ὖṓὗ Ɇὖṓ ὗṓὙ    1 RSimp. 
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4. ὖṓὗ     3 LSimp. 

 

5. ὖṓ ὗṓὙ     3 RSimp. 

 

6. ὗṓὙ     5,2 M.P. 

 

7. ὖṓὙ     4,6 H.S. 

 

8. Ὑ      7,2 M.P. 

 

ὖ Ɇ ὖ ṓ ὗ  Ɇ ὖ ṓ ὗ ṓ Ὑ  ṓ Ὑ 
T T T T T T T T T T T T T 
T ṩ T T T ṩ T ṩ T ṩ ṩ T ṩ 
T F T T T F T F T F F T F 
T ṩ T ṩ ṩ ṩ T T ṩ T T T T 
T ṩ T ṩ ṩ ṩ T T ṩ T ṩ T ṩ 
T ṩ T ṩ ṩ ṩ T ṩ ṩ ṩ F ṩ F 
T F T F F F T T F T T T T 
T F T F F F T T F T ṩ T ṩ 
T F T F F F T T F T F T F 
ṩ ṩ ṩ T T T ṩ T T T T T T 
ṩ ṩ ṩ T T T ṩ T T ṩ ṩ T ṩ 
ṩ ṩ ṩ T T ṩ ṩ ṩ T F F ṩ F 
ṩ ṩ ṩ T ṩ T ṩ T ṩ T T T T 
ṩ ṩ ṩ T ṩ T ṩ T ṩ T ṩ T ṩ 
ṩ ṩ ṩ T ṩ T ṩ T ṩ ṩ F ṩ F 
ṩ ṩ ṩ ṩ F ṩ ṩ T F T T T T 
ṩ ṩ ṩ ṩ F ṩ ṩ T F T ṩ T ṩ 
ṩ ṩ ṩ ṩ F ṩ ṩ T F T F ṩ F 
F F F T T T F T T T T T T 
F F F T T T F T T ṩ ṩ T ṩ 
F F F T T T F T T F F T F 
F F F T ṩ T F T ṩ T T T T 
F F F T ṩ T F T ṩ T ṩ T ṩ 
F F F T ṩ T F T ṩ ṩ F T F 
F F F T F T F T F T T T T 
F F F T F T F T F T ṩ T ṩ 
F F F T F T F T F T F T F 

 

Colour Key:  Ὑ is true when  ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ  is true, green but where ὖɆ ὖṓὗ Ɇ

ὖṓ ὗṓὙ ṓὙ is not true in l, magenta. 

           p. 292 
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{ǘǳǘǘŜǊŜǊΩǎ 5ŜŘǳŎǘƛƻƴ ¢ƘŜƻǊŜƳ 

Lemma 4.48 According to Fronhöfer, the following modified deduction theorem obtains: 

 For a set of formulae  of l, and formulae Ἃ and Ἄ also of l     

  ᷾Ἃ ṲἌḳהṲἋṓ ἋṓἌ  

 Proof: We apply M.P. twice. 

 Suppose that the sequence of formulae Ἅ, ἍΣ Χ Ἅ  constitutes a derivation of Ἄ from 

᷾Ἃ. 

 We establish by mathematical induction on Ὥ that ṲἋṓ ἋṓἍ  obtains for each Ὥ 

from 1 to ὴ, and hence that ṲἋṓ ἋṓἌ  obtains. 

¶ In the case that Ἅ is Ἃ, then ṲἋṓ ἋṓἍ  by Lemma 4.9(c), since 

Ἃṓ ἋṓἍ  is Ἃṓ ἋṓἋ  is l1 with Ἃ/Ἔ and Ἃ/Ἕ.  

¶ In the case that Ἅ is an axiom or a member of , then 

 

(a) ṲἍ by Lemma 4.9(c) or by Lemma 4.9(e) as the case may be, but 

 

(b) ṲἍṓ ἋṓἍ  by Lemma 4.9(c), since Ἅṓ ἋṓἍ  is l1 with Ἅ/Ἔ 

and Ἃ/Ἕ. Hence, 

 

(c) ṲἋṓἍ by Lemma 4.9(f) (M.P. (a),(b)). But, 

 

(d)  Ṳ ἋṓἍ ṓ Ἃṓ ἋṓἍ  by Lemma 4.9(c), since ἋṓἍ ṓ

Ἃṓ ἋṓἍ  is l1 with ἋṓἍ/Ἔ and Ἃ/Ἕ. Hence, 

 

(e) ṲἋṓ ἋṓἍ  by Lemma 4.9(f) (M.P. (c),(d)). 

 

¶ In the case that Ἅ is obtained by M.P. from Ἅ ṓἍ and Ἅ , then 

 

ṲἋṓ ἋṓἍ  and ṲἋṓ Ἃṓ Ἅ ṓἍ   I.H. 

 

ὲ Ἃṓ ἋṓἍ  

ể 

ά Ἃṓ Ἃṓ Ἅ ṓἍ  

 

ά+1  ═ṓ Ἅ ṓ ἋṓἍ    ά Tran. 

 

ά+2 Ἅ ṓ ═ṓ ═ṓἍ    ά+1 Tran. 

 

ά+3 Ἃṓ Ἃṓ Ἃṓ ἋṓἍ   ά+2, ὲ GHS 
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ά+4 Ἃṓ Ἃṓ Ἃṓ ἋṓἍ ṓ  lD11, Ἃ/Ἔ, ἋṓἍ/Ἕ 

 Ἃṓ Ἃṓ Ἃṓ╒  

 

ά+5 Ἃṓ Ἃṓ ἋṓἍ░    ά+4, ά+3 M.P. 

 

ά+6 Ἃṓ Ἃṓ ἋṓἍ░ ṓ  lD11, Ἃ/Ἔ, Ἅ░/Ἕ 

Ἃṓ ἋṓἍ░  

 

ά+7 Ἃṓ ἋṓἍ░    ά+6, ά+5 M.P. 

 

Hence הṲἋṓ ἋṓἍ░ by Lemma 4.9.    p.  296 

 

E.g. 4.49 From e.g. 4.47, Ὑ is derivable from ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ  in lA. Therefore it 

follows from the Modified Deduction Theorem that ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ ṓ

ὖɆ ὖṓὗ Ɇὖṓ ὗṓὙ ṓὙ is a theorem. Verify by truth table below. 

 
ὖ Ɇ ὖ ṓ ὗ  Ɇ ὖ ṓ ὗ ṓ Ὑ  ṓ ὖ Ɇ ὖ ṓ ὗ  Ɇ ὖ ṓ ὗ ṓ Ὑ  ṓ Ὑ 

T T T T T T T T T T T T T T T T T T T T T T T T T 

T ṩ T T T ṩ T ṩ T ṩ ṩ T T ṩ T T T ṩ T ṩ T ṩ ṩ T ṩ 

T F T T T F T F T F F T T F T T T F T F T F F T F 

T ṩ T ṩ ṩ ṩ T T ṩ T T T T ṩ T ṩ ṩ ṩ T T ṩ T T T T 

T ṩ T ṩ ṩ ṩ T T ṩ T ṩ T T ṩ T ṩ ṩ ṩ T T ṩ T ṩ T ṩ 

T ṩ T ṩ ṩ ṩ T ṩ ṩ ṩ F T T ṩ T ṩ ṩ ṩ T ṩ ṩ ṩ F ṩ F 

T F T F F F T T F T T T T F T F F F T T F T T T T 

T F T F F F T T F T ṩ T T F T F F F T T F T ṩ T ṩ 

T F T F F F T T F T F T T F T F F F T T F T F T F 

ṩ ṩ ṩ T T T ṩ T T T T T ṩ ṩ ṩ T T T ṩ T T T T T T 

ṩ ṩ ṩ T T T ṩ T T ṩ ṩ T ṩ ṩ ṩ T T T ṩ T T ṩ ṩ T ṩ 

ṩ ṩ ṩ T T ṩ ṩ ṩ T F F T ṩ ṩ ṩ T T ṩ ṩ ṩ T F F ṩ F 

ṩ ṩ ṩ T ṩ T ṩ T ṩ T T T ṩ ṩ ṩ T ṩ T ṩ T ṩ T T T T 

ṩ ṩ ṩ T ṩ T ṩ T ṩ T ṩ T ṩ ṩ ṩ T ṩ T ṩ T ṩ T ṩ T ṩ 

ṩ ṩ ṩ T ṩ ṩ ṩ T ṩ ṩ F T ṩ ṩ ṩ T ṩ T ṩ T ṩ ṩ F ṩ F 

ṩ ṩ ṩ ṩ F ṩ ṩ T F T T T ṩ ṩ ṩ ṩ F ṩ ṩ T F T T T T 

ṩ ṩ ṩ ṩ F ṩ ṩ T F T ṩ T ṩ ṩ ṩ ṩ F ṩ ṩ T F T ṩ T ṩ 

ṩ ṩ ṩ ṩ F ṩ ṩ T F T F T ṩ ṩ ṩ ṩ F ṩ ṩ T F T F ṩ F 

F F F T T T F T T T T T F F F T T T F T T T T T T 

F F F T T T F T T ṩ ṩ T F F F T T T F T T ṩ ṩ T ṩ 

F F F T T T F T T F F T F F F T T T F T T F F T F 

F F F T ṩ T F T ṩ T T T F F F T ṩ T F T ṩ T T T T 

F F F T ṩ T F T ṩ T ṩ T F F F T ṩ T F T ṩ T ṩ T ṩ 

F F F T ṩ T F T ṩ ṩ F T F F F T ṩ T F T ṩ ṩ F T F 

F F F T F T F T F T T T F F F T F T F T F T T T T 

F T F T F T F T F T ṩ T F F F T F T F T F T ṩ T ṩ 

F F F T F T F T F T F T F F F T F T F T F T F T F 

 

           (p. 298) 
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lD11 ὖ & ὖṓὗ ṓὗ 

 

1. ὖṓὗ ṓ ὖṓὗ      lD4, ὖṓὗ /ὖ 

 

2. ὖṓὗ ṓ ͯͯ ὖṓͯͯ ὗ     1 D.N. (twice) 

 

3. ὖṓὗ ṓ ὗͯṓ ὖͯ     2 GCON 

 

4. ὗͯṓ ὖṓὗ ṓ ὖͯ     3 Tran. 

 

5. ὗͯṓ ͯͯ ὖṓὗ ṓ ὖͯ    4 D.N. 

 

6. ὗͯṓ ὖṓͯὖṓὗ      5 GCON 

 

7. ὗͯṓͯͯ ὖṓͯὖṓὗ     6 D.N. 

 

8. ͯὖṓͯὖṓὗ ṓὗ     7 GCON 

 

The last line is equivalent to ὖ & ὖṓὗ ṓὗ in terms of ṓ and ͯ . 

Recall that ὖɆὖṓὗ ṓὗ is not a tautology in l, cf. Rem 2.28.   (p. 298) 

 
lD16 ὖṓὗ ṓ ὙṓὛṓ ὖ & Ὑ ṓ ὗ & Ὓ  

 

Rothenberg, (2005, A.21) does provide a derivation of the above derived rule of inference; however 

his justification of the first two lines of his derivation refer to an earlier derivation of his, which in 

turn relies on an earlier definition in his thesis, neither of ǿƘƛŎƘ ŦƻǊƳ ǇŀǊǘ ƻŦ CǊƻƴƘǀŦŜǊΩǎ 

presentationΦ LƴǎǘŜŀŘΣ ǿŜ ǊŜƭȅ ƻƴ ŀ άōǊǳǘŜ ŦƻǊŎŜέ ǇǊƻƻŦ ƛƴ ǘƘŜ ŦƻǊƳ ƻŦ ŀ ǘǊǳǘƘ ǘŀōƭŜ, by which we can 

prove this a tautology. We have had to split the truth table below into three ς the first for ὖ always 

4, the second for ὖ always ṩ, and the third for ὖ always &. 
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ὖ ṓ ὗ  ṓ Ὑ ṓ Ὓ ṓ ὖ & Ὑ ṓ ὗ & Ὓ  
T T T T T T T T T T T T T T T 
T T T T T ṩ ṩ T T T T ṩ T ṩ ṩ 
T T T T T F F T T T T F T F F 
T T T T ṩ T T T T ṩ ṩ T T T T 
T T T T ṩ T ṩ T T ṩ ṩ T T ṩ ṩ 
T T T T ṩ ṩ F T T ṩ ṩ ṩ T F F 
T T T T F T T T T F F T T T T 
T T T T F T ṩ T T F F T T ṩ ṩ 
T T T T F T F T T F F T T F F 
T ṩ ṩ T T T T ṩ T T T ṩ ṩ ṩ T 
T ṩ ṩ T T ṩ ṩ ṩ T T T F ṩ F ṩ 
T ṩ ṩ T T F F T T T T F ṩ F F 
T ṩ ṩ T ṩ T T T T ṩ ṩ T ṩ ṩ T 
T ṩ ṩ T ṩ T ṩ ṩ T ṩ ṩ ṩ ṩ F ṩ 
T ṩ ṩ T ṩ ṩ F T T ṩ ṩ ṩ ṩ F F 
T ṩ ṩ T F T T T T F F T ṩ ṩ T 
T ṩ ṩ T F T ṩ T T F F T ṩ F ṩ 
T ṩ ṩ T F T F T T F F T ṩ F F 
T F F T T T T F T T T F F F T 
T F F T T ṩ ṩ ṩ T T T F F F ṩ 
T F F T T F F T T T T F F F F 
T F F T ṩ T T ṩ T ṩ ṩ ṩ F F T 
T F F T ṩ T ṩ ṩ T ṩ ṩ ṩ F F ṩ 
T F F T ṩ ṩ F T T ṩ ṩ ṩ F F F 
T F F T F T T T T F F T F F T 
T F F T F T ṩ T T F F T F F ṩ 
T F F T F T F T T F F T F F F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

 © philosophy.org.za  
 

 

ὖ ṓ ὗ  ṓ Ὑ ṓ Ὓ ṓ ὖ & Ὑ ṓ ὗ & Ὓ  
ṩ T T T T T T T ṩ ṩ T T T T T 
ṩ T T T T ṩ ṩ T ṩ ṩ T T T ṩ ṩ 
ṩ T T T T F F T ṩ ṩ T ṩ T F F 
ṩ T T T ṩ T T T ṩ F ṩ T T T T 
ṩ T T T ṩ T ṩ T ṩ F ṩ T T ṩ ṩ 
ṩ T T T ṩ ṩ F T ṩ F ṩ T T F F 
ṩ T T T F T T T ṩ F F T T T T 
ṩ T T T F T ṩ T ṩ F F T T ṩ ṩ 
ṩ T T T F T F T ṩ F F T T F F 
ṩ T ṩ T T T T T ṩ ṩ T T ṩ ṩ T 
ṩ T ṩ T T ṩ ṩ T ṩ ṩ T ṩ ṩ F ṩ 
ṩ T ṩ T T F F T ṩ ṩ T ṩ ṩ F F 
ṩ T ṩ T ṩ T T T ṩ F ṩ T ṩ ṩ T 
ṩ T ṩ T ṩ T ṩ T ṩ F ṩ T ṩ F ṩ 
ṩ T ṩ T ṩ ṩ F T ṩ F ṩ T ṩ F F 
ṩ T ṩ T F T T T ṩ F F T ṩ ṩ T 
ṩ T ṩ T F T ṩ T ṩ F F T ṩ F ṩ 
ṩ T ṩ T F T F T ṩ F F T ṩ F F 
ṩ ṩ F T T T T ṩ ṩ ṩ T ṩ F F T 
ṩ ṩ F T T ṩ ṩ T ṩ ṩ T ṩ F F ṩ 
ṩ ṩ F T T F F T ṩ ṩ T ṩ F F F 
ṩ ṩ F T ṩ T T T ṩ F ṩ T F F T 
ṩ ṩ F T ṩ T ṩ T ṩ F ṩ T F F ṩ 
ṩ ṩ F T ṩ ṩ F T ṩ F ṩ T F F F 
ṩ ṩ F T F T T T ṩ F F T F F T 
ṩ ṩ F T F T ṩ T ṩ F F T F F ṩ 
ṩ ṩ F T F T F T ṩ F F T F F F 
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ὖ ṓ ὗ  ṓ Ὑ ṓ Ὓ ṓ ὖ & Ὑ ṓ ὗ & Ὓ  
F T T T T T T T F F T T T T T 
F T T T T ṩ ṩ T F F T T T ṩ ṩ 
F T T T T F F T F F T T T F F 
F T T T ṩ T T T F F ṩ T T T T 
F T T T ṩ T ṩ T F F ṩ T T ṩ ṩ 
F T T T ṩ ṩ F T F F ṩ T T F F 
F T T T F T T T F F F T T T T 
F T T T F T ṩ T F F F T T ṩ ṩ 
F T T T F T F T F F F T T F F 
F T ṩ T T T T T F F T T ṩ ṩ T 
F T ṩ T T ṩ ṩ T F F T T ṩ F ṩ 
F T ṩ T T F F T F F T T ṩ F F 
F T ṩ T ṩ T T T F F ṩ T ṩ F T 
F T ṩ T ṩ T ṩ T F F ṩ T ṩ F ṩ 
F T ṩ T ṩ ṩ F T F F ṩ T ṩ F F 
F T ṩ T F T T T F F F T ṩ ṩ T 
F T ṩ T F T ṩ T F F F T ṩ F ṩ 
F T ṩ T F T F T F F F T ṩ F F 
F T F T T T T T F F T T F F T 
F T F T T ṩ ṩ T F F T T F F ṩ 
F T F T T F F T F F T T F F F 
F T F T ṩ T T T F F ṩ T F F T 
F T F T ṩ T ṩ T F F ṩ T F F ṩ 
F T F T ṩ ṩ F T F F ṩ T F F F 
F T F T F T T T F F F T F F T 
F T F T F T ṩ T F F F T F F ṩ 
F T F T F T F T F F F T F F F 

 

 

Derivation Systems for 3-Valued Propositional Logic 

Completeness of 3-ǾŀƭǳŜŘ _ǳƪŀǎƛŜǿƛŎȊΩǎ [ƻƎƛŎ 

 
Rem. 4.50 Recall that in defn. 2.16 Fronhöfer abbreviated the formula ͯ ὴṓὴ  as f, we also 

decided in Rem 1.76 to use ͯ  ǘƻ ǊŜǇǊŜǎŜƴǘ ΨƴƻǘΩ ƛƴ .ƻŎƘǾŀǊΩǎ 9ȄǘŜǊƴŀƭ {ȅǎǘŜƳ ἌἏ 

where ὃṓ ὃͯ is abbreviated as ͯ ὃ. Recall also the truth table for ὃṓ ὃͯ is 

 

ὃ ṓ  ͯ ὃ 
T F F T 
ṩ T ṩ ṩ 
F T T F 

           (p. 302) 
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Additional Derived Formulae 

 

lD30 Ṳ ὃṓͯ ὃ ṓͯ ὃ 

 

lD31 ͯ ͯ ὃṓὃ 

 

lD32 ὃṓὄ ṓ ὄͯṓ ὃͯ 

 

lD33 ͯὃṓὄ ṓ ὄͯ 

 

lD34 ὃṓ ὄͯṓͯὃṓὄ  

 

lD35 Ṳͯ ὃṓ ͯ ὄͯṓ ὃṓὄ       (p. 302) 

 
FronhöferΩǎ ŘŜǊƛǾŀǘƛƻƴǎ ŦƻƭƭƻǿΥ 

 

 lD30 Ṳ ὃṓͯ ὃ ṓͯ ὃ 

 

1. ὃṓ ὃͯ ṓὃ ṓὃ ṓ ὃṓ ὃṓ ὃͯ ṓ  l2, ὃṓ ὃͯ ṓὃ/ὖ, 

ὃṓ ὃͯ ṓὃ ṓ ὃṓ ὃͯ     ὃ/ὗ, ὃṓ ὃͯ/Ὑ 

 

2. ὃṓ ὃͯ ṓὃ ṓὃ     l4, ὃ/ὖ 

 

3. ὃṓ ὃṓ ὃͯ ṓ ὃṓ ὃͯ ṓὃ ṓ ὃṓ ὃͯ   1,2 M.P 

 

4. ὃͯṓ ὃṓ ὃͯ      l1, ͯ ὃ/ὖ, ὃ/ὗ 

 

5. ὃͯṓͯͯ ὃṓ ὃͯ      4 D.N. 

 

6. ͯὃṓ ὃͯ ṓὃ      5 CON 

 

7. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ    l2, ὃṓ ὃͯ/ὖ, 

ͯὃṓ ὃͯ ṓὃ ṓ ὃṓ ὃͯ ṓὃ    ͯὃṓ ὃͯ/ὗ, ὃ/Ὑ 

 

8. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ ὃṓ ὃͯ ṓὃ  6,7 GMP 

 

9. ὃṓ ὃͯ ṓὃ ṓ ὃṓ ὃṓ ὃͯ ṓ ὃṓ ὃͯ   3 TRAN 

 

10. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ    8,9 GHS 

ὃṓ ὃṓ ὃͯ ṓ ὃṓ ὃͯ  

 

11. ὃṓ ὃṓ ὃͯ ṓ      10 TRAN 

ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ ὃṓ ὃͯ  

 



109 
 

 © philosophy.org.za  
 

12. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ    l4, ὃṓ ὃͯ/ὖ 

ὃṓ ὃͯ ṓ ὃṓ ὃͯ 

 

13. ὃṓ ὃṓ ὃͯ ṓ ὃṓ ὃͯ     11,12 GHS  (p. 304) 

 
lD31 ͯ ͯ ὃṓὃ 

 

1. ͯὃṓ ὃͯ ṓὃ      lD8, ὃ/ὖ, ͯ ὃ/ὗ 

 

2. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ    l2, ὃṓ ὃͯ/ὖ 

ͯὃṓ ὃͯ ṓὃ ṓ     ͯὃṓ ὃͯ/ὗ, ὃ/Ὑ 

ὃṓ ὃͯ ṓὃ  

 

3. ͯὃṓ ὃͯ ṓὃ ṓ     2 TRAN 

ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ 

ὃṓ ὃͯ ṓὃ  

 

4. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓ    3,1 M.P. 

ὃṓ ὃͯ ṓὃ 

 

5. ὃṓ ὃͯ ṓὃ ṓὃ     l4, ὃ/ὖ 

 

6. ὃṓ ὃͯ ṓͯὃṓ ὃͯ ṓὃ    4,5 H.S. 

 

Note: lD31 does not hold in reverse. See truth table below. 

ὃ ṓ ͯ  ͯ  ὃ 
T T T F T 
ṩ ṩ F T ṩ 
F T F T F 

          (p. 304) 

lD32 ὃṓὄ ṓ ὄͯṓ ὃͯ 

 

1. ͯͯ ὃṓͯͯ ὄ ṓ ὄͯṓ ὃͯ    l3, ͯ ὃ/ὖ, ͯ ὄ/ὗ 

 

2. ὃṓͯͯ ὄ ṓ ὄͯṓ ὃͯ     1 D.N. 

 

3. ὃṓὄ ṓ ὄͯṓ ὃͯ     2 D.N.  (p. 306) 
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lD33 ͯὃṓὄ ṓ ὄͯ 

 
1. ὄṓ ὃṓὄ      l1, ὄ/ὖ, ὃ/ὗ 

 

2. ͯͯ ὄṓ ὃṓὄ      1 D.N. 

 

3. ͯͯ ὄṓͯͯ ὃṓὄ      2 D.N. 

 

4. ͯὃṓὄ ṓ ὄͯ     3 CON   (p. 306) 

 
lD34 ὃṓ ὄͯṓͯὃṓὄ  

 

1. ὃṓ ὃṓὄ ṓὄ      lD6 

 

2. ὄͯṓͯὃṓὄ ṓ ὃṓὄ ṓὄ   l3, ὄ/ὖ, ὃṓὄ/ὗ 

 

3. ὃṓὄ ṓὄ ṓ ὄͯṓͯὃṓὄ   l3D32, ὃṓὄ/ὃ, ὄ/ὄ 

 

4. ὃṓ ὄͯṓͯὃṓὄ     1,2,3 Sub.  (p. 306) 

 
lD35 Ṳͯ ὃṓ ͯ ὄͯṓ ὃṓὄ  

 

Fronhöfer refers the reader to Wajsberg (1931, p. 269) for a derivation; however we cannot make 

sense of the unfamiliar notation. ²Ŝ ƘŀǾŜ ǘƘŜǊŜŦƻǊŜ ŀƎŀƛƴ ǊŜǎƻǊǘŜŘ ǘƻ ǘƘŜ άōǊǳǘŜ ŦƻǊŎŜέ ƳŜǘƘƻŘ ƻŦ 

proof by means of a truth table. If we accept that the statement is tautology and that such a 

demonstration is as good as a derivation we may insert the symbol ΨṲΩ as an indication of proof. 

 

ͯ  ὃ ṓ ͯ   ͯ ὄ ṓ ὃ ṓ ὄ  
F T T T F T T T T T 
F T T T ṩ ṩ ṩ T ṩ ṩ 
F T T F T F T T F F 
T ṩ T T F T T ṩ 4 T 
T ṩ T T ṩ ṩ T ṩ T ṩ 
T ṩ T F T F T ṩ ṩ F 
T F T T F T T F T T 
T F T T ṩ ṩ T F T ṩ 
T F T F T F T F T F 

 

 

 

 

 

Note: An update to this study unit will be published in the coming weeks. 
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