Critical Reasoning & i Introduction to
Many-Valued Logics

After Fronhofer(2011)

A many-valued logids a propositional calculus in which
there are more than two truthvalues. Up till now we have
tacitly accepted therinciple of bivalencewhich states that
every sentence expressing a proposition has exactly one
truth value, either true or false. Logics that satisfy this
principle are called twwvalued or bivalentNot to be
confused with the principle of bivalencie related law of
the excluded middlestates that either a proposition is true #® e ) A 3
orits negationistruet KSNBE OFy 06S y2 { - ETRNS
wad T KSyO0S (KS vyl YBiswaStht€itbylzF J an G u k @8&78- 956)Rolish
Russell and Whitehead in thé?rincipia Mathematicas Logician and Philosophewidely
- Regardedfor his Work on Philosophici
the now familiar,

and Mathematical Logic

HE

Unoon
Aristotle was the first to formulatéhis in his discussion of thprinciple of noncontradictionwhich

states that contradictory statements cannot both be true at the same tifigs was also statdaly
Russell and Whitehead their Principia Mathematicas

Ux nEn

Ironically, Aristotle was also the first to question the law of the excluded middfecially as it

relates to future eventsSuppose two teams, Red and Blue, are to play a match next Saturday, then

GKS adGlradSYSyid a¢KS wSRa gAff 0ShtpresérifstcetiedzSa¢ A &
event has noyet happened. It is as if the truthialue of the statement is somehow in limbo iint

after the event. We have also seen seiferential statements such asef A I N &, LJ NI} R2 E

This statement is false.

La Ad0 GNHz2SK 2Sff A0 Aa AndizSstheFo callddarbesipar@ddx YR A G A
derived from Russell's paradd&ee Critical Reasoning 18.)

There is donevillage barber who shaves all men in the village who do not shave themselves.
Does he shave himself?

Again this question cannot be answered without contradiction. Either he shaves himself, in which
case he does not shave himself or he does not shave himself, in which case he does. Whether the
paradox can be resolved has received much attention, not least by Russell himseFhe his
Philosophy of Logical Atomisithere arealsostatements that may or may not be true but that could
never be known, not even in principle, such as

Thereare other universes besides ours.
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According tesome logiciansespecially since the early'2Century there is therefore aneed for a

system of logic that takes account af least (1 K A NR 2 dNLJ2 &2/ Ar@ftx Sdgthat is

YSAGKSNI GNHzS y2NI Tl f &S adl¢iKa3SisS eyIbasiNGyads| yioia aagtes AQDTE f ¢
Kleeng but there areother logicsof more than three truth values and beyond including, so called,

fuzzy logic which tsinfinitely many.

Wewereunable to find a suitable book chapter or journal article as a glad#his study unitg most

are either too technical or too fragmentarhoweverlecture notespreparedby Bertram Fronhofer

of Dresden Technical Universitgtroduction to ManyValued Logic&011)do provide the

necessary detail while remaining accessilblee rest of this study unit is therefore based on these

y2iSa 6KAOK ¢S KI @S KI NXoehfsfartakesRa brdadli storical appreagh y 2 G I (
to many valued logicsb@ S3Aya AGK  RAIFINIY NBLINB&ISgEsi Ay (K

Many Valued-Logics
truth-functional not truth-functional
z |

3 |

H |
z possibilistic logic
fuzzy logic probabilistic logic

¢CKS UGSNXI tdzBRE[ 23A0a¢ dzham drahch of MB dia§raliiwhérethel KS S ¥F
numerals represent the number of truthalues.(p. 2)Before setting out a schema fthree-valued

logic Fronhoferfirst defines the syntax and semantics of classical {taloed) logic according to

conventions that will be used lateKlote his approach is quite different to that of Copi and should

therefore be followed from the get go. Thus,

Propositional Alphabet and Formulae
Defn. 1.1Analphabet of propositional logiconsists of

1 aset n Nn NN 8 of propositional variables
1 the set of standadt connectivess p ME ¢ M ¢ N6 ¢ Nk ¢ together with their
arities or number ofarguments or operands that the function takg@s parentheses)

© philosophy.org.za


https://web.archive.org/web/20131225052706/http:/www.wv.inf.tu-dresden.de/Teaching/SS-2011/mvl/mval.HANDOUT2.pdf
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Defn. 1.2The set opropositional formulae is the smallest etwith the following properties:

1 IfF~y 7, thenFN CL(so called atomic formulae)
1 If p isaunary connective arfeN CL then F~N CL
1 If ¢ isabinaryconnective ands G* CL.then F G N CL

Usually we drop the outer pair of parentheses. (p. 6)

Classical (Twalued) Semantics
Defn. 1.3We denotethe (classical) trutivalesby the set i
For each connective ¢ we define a truth function “ dn 1

Defn. 1.4A classical (propositional) interpretatign 1 N8 consists of the set 41k of
truth valuesand a mappingd: CL°® 1 with:

¢ ESEDEEAl Ol
& . e (p. 6)
§ 87 ¢ t EMEODEEA Od €

Rem 1.5An interpretation) 1 N8 is uniquely definedby specifying hovi acts on
propositionalvariablesWe call this restriction of an interpretation to avaluationor a
truth -value assignmentin other words:

1 A valuation uniquely determines an interpretation.
1 Moreover, every valuation can be uniquely extended to an interpretation.

We often represent an interpretation 1 N8 bythe set’AN T A¢ 4
Sometimes wanrite &€ instead of £ &.

2AGK 53520 AFGA0S O02yyS0GA0Sa 65 @BYSGAYSE

Classical (Tw&alued)Truth Functions

Defn. 1.6For0R) N 1 the truth functions *; ; §;6° andk * are defined by their truth tables as

in Critical Reasoning 05, only usiifg instead of A and B granda. (p. 8)
x 20 VE O 0G0U
WJY) | T F W) | T F
T T F T T T
F F F F T F
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V0" 0 Ok*0
Do | T F Do | T F
T T F T T F
Fl T T F|l F T

Defn. 1.7LetFN ClLthen,

1 Fis callecsatisfiableiff there is an interpretation) 1 N8 |¢¢ 4

f  Fis calledvalid or tautologousiff for all interpretations) 1 N8 |¢¢ 4

f Fis calledfalsifiable or refutable iff there is an interpretation) 1 N8 |¢¢ &
f  Fis calledunsatisfiableiff for all interpretations) 1 N8 |£¢¢ & (p. 10)

E.g.1.8 In this exampld-ronhdferdemonstrates the trutitable method for working out the
combination of truth values under the connective with the widest scope of a complex
formula. We have already mastered this skilCititical Reasoning Gfowever you may
want to refresh your memory by constructing a tretéible for the formula in is example,
i.ex O F 0 QY with 0,0 and'YinT. The solution is on p. 10 of the notes.

Primitive Connectives

Defn. 1.9Ve maytake YR w Fa LINAYAGAGDS O2yySOGAGSa | yR
in terms of them. Thus,

pufi
w»

000 = x DB O

~ s o

060 := OO

Ok 0= OB O B x0FD

We had considerable practiaeith this inCritical Reasoning 21; however you may wish to
check that these are semantically correct by verifying thesimg truthtables.

Rem 1.110ther choices of primitive connectives are posstaleh as taking andOas primitive and
defining the others in terms of them. Thus,

0RO = x 0 & 0
060 :=x000

OkO:=x0&0 & 000

The connectives andd can also be taken as primitivehich is a very frequent choice
when axiomatiing a logicAgain seeCritical Reasoning 21 (p- 12)
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Models

Defn. 1.12An interpretation) 1 N8 is called anodelfor a propositional formuld. In symbols
g0¢iffet 4

Thrm. 1.13A propositional formula is valid {J £ iffx ¢ is unsatisfiable.

Defn. 1.14L et be a set of formulae, then

1 21is satisfiableff there is an interpretation mapping each element 1to T.
f  Aninterpretation) is called a model fal. In symbols§ U 1 iff € is a model for all
€N Q. (p. 14)

Logical Consequence

Defn. 115 A propositional formulé is a propositional) consequencef a seta of propositional
formulae In symbolsd U ¢ iff for every interpretation) it holdsthat if ) U 2 then) U &.

1 We also say that the sat of formulaeentailsthe formulaé. Byconvention, in the
case thah ¢ we justwrite¢ U ¢ instead of ¢ U§.

§ ¢ isvalidor atautology - U ¢ for short- iff ¢ evaluates to T under every
interpretation.

1 ¢ isacontradictioniff € evaluates to Einder everyinterpretation.

Thrm. 1.16Leté; ¢ T €X beTpropositional formulae, then
¢T & URholdsiffU 8 ¢ E¢ K8 Fé¢ 6 ¢ holds.

f  Forclassicapropositionalformulae¢ and¢ , it holds thaté k € iff ¢ U ¢ and
¢ Ue. (p. 14)

Arguments
Defn. 1.17A (deductive) argumentis a pair ' [f with a formulag and a set of formula” .

1 Theformulaein® are called the premises and the formulas called the
conclusion.
1 We say that an argument&lid iff the set consisting ahe premises entails the
I NBdzY Sy (i Qaie.OB ¥ Of dzaA 2y X
1 We also say thahe conclusion of a valid argumefdilows from the premises.
(p. 16)

Rem 1.18L y (i K A aFranhdderaxplaids Bow deductive arguments are traditionally displayed
by writing the premises, one per line, followed by a separator line and then the
conclusion. We are already familiar with this format, having used it consistently
throughout. He also provides two examples of how to test the validity of an argument
using the longer truth table method. Again, we are familiar with tbéhnique and
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indeed went one step further by introducing the sorter truth table technigue in Critical
Reasoning 09.

Rem. 1.19Two noteworthy laws of classical logic:

1 TheLaw of NonContradictionis thenegation of the formuldAE "Awhich is a
contradiction in classical logicehcex "AB A is a tautology.

1 TheLaw of Excluded Middl¢see above) symbolised a€x ¢ is a tautology in
classical logicThe same holds true for the alternatixclusive offXOR)
encountered inCritical Reasoning 05. (p. 18)

Formal Conception of Many/alued Logic

Rem. 1.20We have the same set @fLformulae €f. Definitions 1.1 and 1.2) and the same (standard)
connectivest , (X wk I whith may be extended by additional ones and their symbols.
However now we interpret formulae differently:

1 3-valued logica 4N&B  (true, falseneutral)

We understanch 4N& as a subset of
or we assume a canonical embeddingof into 1

1 By ° we still denotethe truth function which classically interprets the connective

By ‘N B we denotethe truth functionswhich classically interpret the
O 2 y y S Onridifédehit manyvalued logics, where thsubscriptrefers to the
respective logic

1 We use the same subscripis connectivesthus for example we writ€6 . Gif
we want to express that we are interested in the formBia Gas a formula of
the logic which interprets the connective 6”& (p. 26)

Defn. 1.21A 3-valued (propositional) interpretation) 1 N8 of alanguagdl of a 3valued logic
Xwith connectives referred to by consists of the set of truth values AN&B
and a mappin@Dfl © 1 with
T e FEEDOEEA Ol ¢
é €
¢ Pl PEMEOEEA O Lé

Rem. 1.22Consequently, with  there are morepossibletruth functions Theefore sometimes
additional connectives have radassical counterparbr share the samelassical
counterpart, e.g.there aretwo different negations which coincide on .

Different manyvalued logicgliffer

- in the choice of truth functions for (standard) connectives and
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- sometimes by additional connectives: additional hegagicadditional
conjunctionsgetc. (p- 26)

Yt SSy SQavalfed dBio/ 3 o
Defn.1.23l y Ff LIKI 6 S0 2 Fvalietl So§i§"Sdsistsofil N2y I o

1 aset n NN NN 8 of propositional variables

{ the set of standard connectives pIE ¢NO ¢Nd ¢Nk ¢ together
with their arities

f GKS aLSOALFf OKIFNIOGSNE dadé6da YR ao0é

Defn. 1.24Truth functions of " usingd (P. 30)
VE 0 03 0
vo| T s F vo| T s F
T T S F T T T T
$ $ $ F $ T $ S
FI|F F F F|l| T s F
06”0 Ok* 0

vol| T s F vo| T s OF

T T S F T T S F

$ 4 S S $ S S S

F T T T F F S T

Colour Key: Blagknormal; Blueg uniform; Redc regular. See definitions 1.25, 1.28 and 1.30 below

Defn. 1.25 A¢-ary propositional truth functioriQq © 1 (of a 3valued logic) imormal iff it
is the extension of a-ary two-valued truth functionQgp  © 1 ,i.e." O Q
1 Act-aryconnective ¢ of a manyvalued logicXis anormal extensionof a
classicat-ary £ , or normal for shortiff * is normal and *
1 Amanyvalued logic is calledormaliff the truth tables of all its standard
connectives are normal.

z

Rem. 1.26 A normal manyalued logic can be seen ageneralizationor anextensionof
(classicaljwo-valued logic.

Lemma 1.27All theconnectives MTENO NS Nk ofé A are normalj.e.£ " is a normal logic.
(p- 32)
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Defn. 1.28 A propositional truth function in a-8alued logic isiniform iff for every row/column of

its truth table the following holds:

9 If all entries (of this row/column) in the classically restricted table are the same
i.e.either4 or &- then this value is also in the nantassicatell (of this
row/column).

1 A connective is uniforriif its truth-function is uniform.

1 Alogic is calledniformif the tables of all its standard connectives are uniform.

Lemma 1.29All the connectives MENO N6 Nk of & N areuniform,i.e.£ N is a uniform logic.

(p- 32)

Defn. 1.30 A propositional truth function in a-8alued logic isegulariff it has the following

feature:

1 A given column/row containgd O Fdii@hes row/column implies the
column/row consists entirely egfQ@r entirely of&Q. §leene, 195p

1 A connective is regulaif its truth function is regular.

1 Alogic is called regular if the tables of all its standard connectives are regular.

Lemma 1.3INormality and Regularity uniquely determinev8lued negation.

Proof: There is just oné - row with just one position in a table&hich defines a unary
truth function. See truth table for * 0 above.Regularity would allovt to containa 4 or
a &in this positionust in case the entire column would consist entirelg@@¥ar entirely
of & &vliich contradicts normality. (p. 34)

Lemma 132 All the connectives TENO N6 Nk of é N are regulari.e.€ s aregularlogic.

Lemma 1.33rhe truth functions o " are thestrongest possible regulaextensionof the classical

Rem 1.34

E.g.1.35

2-valued (standard) functiong:hey are regular and haweet or a&in each position
where any regular extension of thevalued tables can havedaor a&

{dzYYF NAT Ay3 YES8S8SyS8oa {dNBy3 /2yyS80iArgssa

1 Kleene exploited normality, regularity and uniformity
1 and just filled in the remaining gaps wih (p- 34)

Truth-tables for some formulai & 1: Using the same skilidready masteredn Critical
Reasoning 0%e proceed to populate the truth tables that follow wihQQ & & and now
also$ Qaccording to the definitions of the connectivesg NO N6 Nk  in their
respective truthtables aboveThe connective with the wist scope is highlighted.

(p. 36)
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P & x P P 8 P & Q P E Q 8! P O Q
T T F T T T T T T T T T T T T T
S $ s s T § T $ § T § $§ T T T $
F T T F T F T F F T F F T T T F
s T s T T $ s T T & T T
S $ s s s S s s $ $ § §
s s s $ F s F F T s s F
F T F T T F F T T F T T
F T F T 3§ F F § T F §$§
F T F T F F F F T F F F

Defn. 1.36 Fronhdferpoints out that we can take andE as primitive connectiveand introduce
the other connectivesiccording to e following definitions

000 = x O0Fx 0

jy|

0 O=x 0Ex 0

k 0 =x DEX 0 Ex x GEG

Ca

While this is useful when axiomatizing a logidoes make the already laboriotrsith-
table method even more tedious. We therefore pass over the further examples on
pages 36 38.

Defn. 1.37 Tautologies and contradictions in ava@lued logic are defined as follows:

1 Atautologyin a 3valued logic is a formulathat has the valud on all
interpretations. (There is no interpretation on whiéthas either the valué&or
the values )

1 Acontradictionin a 3valued logic is a formulathat has the valu&on all
interpretations.(There is no interpretation on whidhhas either the valud or
the values )

Lemma 1.38 There are neither tautologies nor contradictionstiR.

Proof: Examining the truth functionshows that whenever all of the propositional
variablesoccurring in a compound formukhave the value , so does the

compound formula:. Therefore for any formul&there is at least one interpretation
on which Fhas the valug . Consequently, no formula can be either a tautology or a
contradictionin € N. (p. 38)

The Normality Lemma

Defn. 1.39  We call a ralued truthvalue assignmentlassicalff it assigns only the classical
values4 and/or &to propositional variables.

Lemma 1.40 In a normal 3valued logic, a classical interpretation behaves exactly as it does in
classical logic:
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Defn. 1.41

Rem 1.42

Lemma 1.43

E.g.1.44

10

1 Everyformula that is true on that interpretation in the-8alued logias also
true on that interpretation in classical logic, and

1 Every formula that is false on that interpretation in thev@ued logids also
false on that interpretation in classical logic.

Proof: The lemma follows from the fact that the connectives in a normal system of
connectivedehave exactly as they do in classical ledienever they operate on
formulae with classical truthvalues. (p. 40)

Entailment (Proper)

We say that a set of formulaeentailsa formulaFin 3-valued logidff whenever all
the formulae in' are true, thenFwill be true also. (In other words, there is no
interpretation on which althe formulae in" have the valuel while Fhas the value&
ors .

Furthermore, an argument iglid in 3-valued logic iff the set of its premises entails
its conclusion.

As before we use the standard notation for entailment such that Fmeans that
the set of formulae entails the formulaE:

1 Since entailment depends on the logic under consideration we continue to
useU (without a subscript) to indicate entailment in classical logic and
introduceU to indicate entailment iré . (p. 40)

For every formuldin CLit is the case that if Uz Fthen® U F. (l.e.every
entailment iné 1is also an entailment iolassical propositional log)c

Proof: Assume that U; F. By the definition of entailmenbn every classical (and
non-classical) interpretation ig 1 on which the formulaén* are all true Fis also
true. But sincé " is normal, the same is true in classical logic by the Normality
Lemma (1.40). Therefofe U; is the case as well. (p- 42)

On the other hand, some but not atlassical entailments hold & . The following
classically valid argument is also valid th

P, z
P6 QLQ

can be represented according to the trutéible over page.

Colour KeyCyanor green- classical interpretatiorreen- classical valid argument
(P. 42)
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PIP 0 Q |Q
T | T @0 T |0
T T § S S
T | T F F F
S S T TI| T
S S S S S
S |s S F | F
F F T T | T
F F T s S
F F T F F

Lemma 1.45 Not all entailments of classicptopositional logic hold &".

Proof: The argument Ok 0 /C 0 k'Y O 0 k'Y is classically valid but not
valid iné N. It is classically vdlbecause for the premise to be tril@eand 1 must
have different truthvalues But no matter what the trutkvalue of2, it will be
equivalent toeither one or the other oD or 1, since there are only two trutkialues
in classical logic. In other wordetvalidity depends crucially on the fact that
classical logic is bivalent.

However irg r", the premis¢ 0 k 0 can have the valué while the conclusion
has thevalue . For 0Ok 0 tobetrueiné, 0 k O must be false, which
means thatd and1 must haved 2 LILJ2 & A U 8uth-valdes Butif2 s the
values ,then 0 k 'Y O 0 k 'Y has the valus . (p. 44)

See the truth table over page

Colour KeyCyanor green- classical interpretationiareen- classical valid argument
B8 invalid argument irg 1.
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There are no tautologies !

(p- 46)

Recall
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_dz] | & A SvalheOlogca o
Alphabet and Formulae
Defn.1.46 !y | f LIKI 6 S 2V&lued topitl & sofsists 61 Q& o

1 aset nnNn NR 8 of propositional variables

f the set of standard connectives p TE ¢ M ¢ Nd ¢ Nk ¢ together with
their arities

 ThespeciaDKI NI OGSNAR dGoa FyR ao0¢é

Formulae of are defined as with classical propositional logic.

Rem 1.47 Fronhoferuses red rather than a subscript to distinguish the connectiv@svaiued
_dz] I & A S aowéver wé @ EhOsen to simply preface any such discussion or
O2yySOGADSaE BROPK GKS adaevyozf W

Rem 1.48 We denote entailmenin| by U. (p. 50)

Defn. 1.49 Truth functions of  usingdhy

OE 0 LS O
R vo| T § F vo| T § F
T F T T S F T T T T
S S S S S F S T 3 S
FlT FIF F F Fl T s F
06" 0 0k 0
vo| T § F vo| T § F
T T S F T T S F
S 4 T 8 $ S T s
FlT 17 7T FIF s T

The olourkey is adeforebut note how inl  a neutralimpliesa neutralis true.(p. 52)

Normality, Uniformity and Regularity

Rem. 1.50 Note that although the trutktables for the connective8 andk RA FFSNJ FNRBY Y SS
truth-tables,thel connectives are also botiormal and uniformHowever,

 _ dz] I a AtSth-fatidds &&NOT all regulafhe truthtables for the connectives
0 andk are not regulabecause of theniddle rows or columns. (p- 52)
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E.g.1.51 Consider again thstatementsd ¢ 0;06 06 0 and O RO & 0 OO0 iné Nfor
which we drew ugruth tablesin e.g.1.35 Here we do the same for the above

statements in  and note the differences. (p. 54)
P O x P P 6 (P 6 Q) P E Q 6 (P O Q
T T F T T T T T 7T T T T T T T T
S s s T § T $§ s T § s T T T s
F T T F T F T F F T F F T T T F
$ T $§ T T $§ S T T $§ T T
s T s T s s s s T $§ s s
$ T s S F S F F T s s F
F T F T T F F T T F T T
F T F T s F F § T F § §
F T F T F F F F T F F F

Rem 1.52 Inl we may expressOk "Oin terms of connectives df according to the following

table.
(F k G k (F 6 G E (G & F)
T T T T T T T T T T T
T F § F T s & s & T T
T F F T T F F F F T T
s F T F & T T s T s s
s T s T $ T s T § T s
s F F F s s F s F T s
F F T T F T T F T F F
F F s F F T s s $ s F
F T F T F T F T F T F

Thisimplies that for every interpretation df it is the case that:
e8¢ ¢fiff £0¢ Ee0€é & 4and
iffboth 66 £ ¢ 4andédét 4

Therefore, testingkk ' means testing bott& o ' and' & &or testing for k & This
is not the case fog 1. (p. 54)

Rem 1.53 Note that0 k 0 is not equivalenttod U0 and 0 U 0. This can be shown
according to the following truth tablever page The lines that show thalifferenceare
highlighted in magentgFor the purposes of metievel reasoning, Fronhofer justifiably
overlooks a couple of conventions.) (p. 56)
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Rem 1.54

Defn. 1.55

15

Py U Q and {Q} U P) k (P k Q)
T T T T T T T T T T T
T F $ F $ T T T T F s
T F F F F T T T T F F
s T T F T F $ T s F T
s T s T s T s T s T §
a1 FE1 F1aifleii
F T T F T F F T F F T
N B I B N B B BN
F T F T F T F T F T F

In Search of Primitive Connectives

Because the truthiables fa 6 andk assign & to a formula whoselirect subformulae
both have the valug , neitherd nork can be defined ih by a formula using the
other three connectives,> w Q I y R

Proof: If we construct a formul&in| usingonly = w Oaslcofifiectivesthen
whenever the atomic formulae from whidhkis constructed all have the valge, thenF
will also have the valug . Howeverin| , the formulaeAd AandAk Aboth have the
valueT when A hasthe values .

_dz] | & th&dloke@bke andd as primitivefor defining the other three
connectivesSee below. (p. 56)

Ok0O:=0060 E0OD (p. 56)

The definition of 1in| : According toFronhéfer Prior (1953 p. 320) compared the
truth-tables of classically equivalent formulad in Recall from Critical Reasoning 07
that according toMaterial Implicationin classical logic0 6 0 k * 0 O0 .Inl
however:

1
)l

Ca C2
Oon O

5 0 is not equivalent t& 0 OO but isa little weaker, also
0 is implied by 0 O0 but not the other way round.

Constructing siddy-side truthtables forx 000 6 060 and 06 0 6
x 0 O0 inl reveals the differencéwhile the former is a tautology, the latter is not
See belowThe magenta line highlights the crucial difference. (p- 58)
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€& P v Q o6 (P o6 Q P 6 Q 6 ¢ P v Q
F T T T T T T T T T T T F T T T
F T s S T T s S T S S T F T s S
F T F F T T F F T F F T F T F F
S S T T T S T T S T T T s S T T
o8B 8 F 8 F & S F 5 85 85 8 8 8
S s S F T s s F S S F T s s s F
T F T T T F T T F T T T T F T T
T F T s T F T s F T s T T F T s
T F T F T F T F F T F T T F T F
Similarlyjn |

f 0 00 is notequivalentts 0 6 O butis a little stronger, also
f x 0 6 0 isimplied byd O0 but not the other way round.

This time, onstructing sideby-side truthtablesforx 0 6 0 6 000 and 0 O0 ©
x 060 inl reveals the differencéVhile the latter is a tautology, the former is not.

Q) Q)

Q) Q)
T T

mY» 4 m—o +H - H|on

TR 4447
M 4O 4+ <
— - 4 =4 o - —H|on
A4 4B "3
TR 444

A4 4B "=
T 444|o
MY 4 9m— + + H|on
e 4T

—— - -+ 4+ o
T 4447
M 4+ A<
e 4 nElA
44?4
44?4

Again, he magenta line highlights the crucial differenbiate however the classical
equivalence in both tablegbove. (p. 58)

According toFronhéfer in order to defing) Q0 in terms ofd , we require something
which is stronger than 0 6 0 inl but which will be equivalertb it in classical logic.
Thus for the lines dahe truth-tables inl  where the values is not involved) O0 and
x 0 6 0 do coincide. (p. 60)

One way in which to strengthen the logical force of an implicative statement is to
weaken the antecedent. Thus,

T W. NI 2Nt KAf gAftf O2YSQ A& 6SFH{1SN GKI
On the other hand

T WLT . I NI ,Bshall beKukpiised 2AYaS 8 A GNRBY3ISNI G20+ €

t KAf O2YSa L akKlff 0SS &adz2NLINAASR®Q

| 26 SOSNE (KSNBE I NBveO FgaaSat AYWS NGSEAGO KE SiIFKASE UK S
implication unalteredE.g.The statements
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T WLF . NI 2N tKAf O2YSas tKAf gAftft 0O2YS
neither stronger than the ther since it will be true in any case that Phil will
come if Phil comes. (p. 60)

A statement that is weaker than0 in the antecedent 0 6 0 is0 6 0. In both
classical logic and > 0@ A Yhdi G5 &NBWH | NR Svakie o but oK S i NHzii K
always the other way round.

X P 6 (P 6 Q) P 6 Q) 06 « P
F T T T T T T T T F F T
F T T T s § T & § § F T
F T T T F F T F F T F T
$ s T § T T s T T 8§ s s

$ s T s T $ s T s § s s

$ § T § s F $ S F T §

T E 0 E F 0§ F T T T T F
T F T F T s F T &8 T T F
T F T F T F F T F 0T T F

Colour KeyThegreenandcyanrows show that) 6 0 is weaker than 0, while the
greenrows are the classical cases. (p. 60)

Hence the replacement df0 inx 0 6 0 by the weaker propositiod 6 0 will yield
either a stronger assertion than the originab 6 0 or one equivalent to it; and it turns
out to yield an equivalent formula in classical loginol a stronger one ih .

In classical logic:

f Replacing 06 O by 06 0 0 0 has somehing of the artificiality of
replacingd 6 0 by 0 O0 6 0 in the example above, and makes no
difference.

f Infact it amounts to replacingd 6 0 by x 0 O0 6 0, since in classical
logicO 6 1 is equivalent ts 0 O1.
f Note: x0O0O 60 k OB O OO k OO0 Ex OO0

However in

! Whenboth 0 and0 have the truth valugs x 06 O and 0 6 O 6 0 will
have different truth values, the former being true and the latter not; and this
is preciselythe point at whichin|  the truth-tables fox 0 6 0 andd O0
are different.

 Therefore0 6 O 6 0 serves ideally for the definition @f O0 . See the
side-by-side truthtables below wheremagenta line highlights the crucial
differenceand similarity. (p- 62)
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444 nnnl”
T 44 4|v
mY 4m— -4+ o
T4 nElA 1?40
T 4447
44 4=+ Ao
T4 40
e 4+ - - |0
T4l 40
T 44 4|v
AR - EEREEE RIS
T4l 40

Lemma 1.5&very formula that is a tautology lin is also a tautology in classical logic, anvdry
formula that is acontradictionin| is also acontradictionin classical logic

Proof: A formulaFthat is a tautology ih is also truan| on every classical truth
value assignmenSincd is normal, itfollows from the Normality Lemma 1.4Bat Fis
true on every interpretation in classical logidenceFis a tautology in classical logic.
Similarreasoning holds for contradictions. (p. 64)

Lemma 1.5Not every formula that is a tautology in classical logic is also a tautoldgy amdnot
every formula that is a contradiction in classical logic is also a contradiction in

Proof: Any instance of the Law of the Excluded Middle, for examgle A is an
example of a classical tautology that does not always have the ¥dhke . (Seee.g.
1.51 above.)

Alternatively, the formulad & Awhich is aclassical contradiction, is not a contradiction
inl . The formula has the value whenA has the value according to the following
truth table: (p. 64)

Another example is the formuly 6 06'Y 6 060 6 06'Y .Thisformula
always has the valugin classical logjthhoweverin| it has the value& when Pand Q
have the values and Rhas the valud-. Again, thé can be shown by a truttable, over
page where magenta line highlights the crudifference (p. 66)
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=
~—~
—~

o
N

MO 4O 4 4 > 4O 4 4?4 4|8
MO 4O 4?4 > 4O 4 a4 4 4|8

R0 R0 R0 R0 R0 R0 R0 Ro Ro PN NP DD DD 444 H T
444444444 4444 4494 4P 4 o

MMM 444”4440 4440
44444444444 48l1 4244444 944 4|0

MMM 444N A4 AT 444|095
A4 A4 44 A A4 Al A A A A A 4 4P 4| O
A4 4444444444l 4444444 4444440
RO R0 R0 R0 RO R0 RO Ro o WO DD DD 4o o oo

A4 44444444 4 A4 4 TIMPPY 44 4]0

Ro R0 R0 R0 Ro R0 Ro Ro Ro VRO DD 444
444444444444 A 4" 4 44 44" 4 4 4|0

Rem. 1.58 Note that Lemma 1.57 does not claim tratclassical tautologies fail to be tautologies
of | , nor thatall classical contradictions fail to be contradictiond of 46 Ais an
example of a tautology of classical lothiat is also a tautologin |

Lemma 1.5Not all entailments of classical propositional logic hold in (p. 68)

Proof: Recall the argumentin Lemma 1450 k 0 /C 0k 'Y O 0 k 'Y whichis
classically valid but not valid| . It is classically valid because for the premise to be
true 0 and0 must have different trutivalues. But no matter what the truttaalue of,

it will be equivalent to one or the other @for 0, since there are only two truthalues

in classical logic. In other words, the validity depends crucially on the fact that classical
logic is bivalent.

As withé ", so withl . The premis¢ 0 k 0 can only have the valugif 0 and0
KI @S 4 2 ddsdgal thuth S8adueslowever ifY has the value then the
conclusion has the truth valug . See the truth table over page. (p. 68)
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x

,\
35

MmO mEET T MY 4 4 a0 =g P
TOEHT A AN A A = I
HmA 4= 0 0 4 =it 4 A O
MmO BT T T 4 o e =+
TOEHT? A A A s =N

K
T
S
F
S
T
S
]
|
T
S
F
S
T
S
=
S
T
]
E
$
T
S
E
$
T

_| —l _| nN--n--n- _I_I -_rl NN -N- _| _| —l nN--N--n- _I_' -_'_I NN N- _| _| _| =
TTNAHT T EHEEH T T nEHESEA 1 nnESnm -~
_|.(n. _I_I _|.U,. ﬂ _|-_rl.m. _l.m. N _|.U'). ‘N _|.m. _I_'-_| _I_I.m. _| _'_I.m. _| =

_I_I _I_I _I_I -nN--N--N- _| -_| nN--N--N- _I_I _I_I _I_I nN--N--Nn- _| -_| -N- N -\N- _I_I _I_I _I_I

Colour KeyCyanor green- classical interpretatiorgreen- classical valid argumer.
¢ invalid argument in ; differences tc " in the truth table. Qearly,what is a valid
argument in classical logic can be an invalid argumeint Bndcan also differ i€ i

(p. 68)
Rem 1.60 We note that other classically valid arguments are valid irE.g.the classically valid
argument
o
006 0TCO
is also valid im  (and in& r".) (p- 70)

. 2 0K@I NI aValued lio§idNy/ I £ o

According toFronhéfeE (1 KS £ A | NRDssell'pdraddx Rad Russiafi Bolymaimitri
Bochvar(1909- 1994)to conclude that the statements involved were meaningless and hence neither
true nor falsesince only meaningfidtatementscan say true or false thingshis implies that the
truth-values representsmeaninglessnesslis resulting system is a combination of two sets of
connectives:
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1 aninternal systemiA® equivalent tokleene&® weak threevalued logicand
f  an external systeriA® (Bochvar, 193y

Alphabet and Formulae
Defn.1.61 ! Vv | f LK 6 S (inteend 3Valge® KogidAé Namsists lof

1 aset n nNn N7 8 of propositional variables

9 the setof standard connectives pME ¢NO ¢Nd c¢nNk ¢
together with their arities

f tKS aLISOALFf OKIFNIOGSNE Goa FyR aoé

Formulae ofA¢ are defined as with classigadopositional logic. (p. 72)

Defn. 1.62 Truth functions ofA¢ usingui)

VE 0 00 0
A vo| T s F vo| T s F
T | F T | T s F T | T s T
$ S $ $ $ $ $ $ $ $
F| T F| F s F F | T s F
0o6° U Ok* 0
bo| T % F bo| T % F
T | T s F T | T s F
$ $ $ $ $ $ $ $
F|l T s T F|l F s T

Colour KeyGreentruth-values are those that according to2 O K @hterlEation can
apply onlyto meaningful statements or propositions. (p. 74)

Contagious Truthvalues

Defn. 1.63 The truthvalues$ is contagious i€ . Whenever a component of a compound formula
has the valu& , so does the compound formula as a whole, regardless otdhee of
any other component. (p. 74)

Rem. 1.64 If the truth-value$ represents meaninglessness (or absence of meartimg), it is
quite reasonable that this truth value should be contagious. (p- 74)

Rem. 1.65 Kleene also defined a second system-wBBied connectivesyhich he called theveak
connectivesThat system is identical t8¢. We shalhevertheless refer to this system as
. 2 O K @\echiliriy ®Fronhofer Kleene was motivated by neterminating
computations. (p. 76)
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Normality, Uniformity and Regularity
Rem. 1.66 All connectives o are normal.
All connectives o areregular, but not the strongestregular ones.
Of the binary connectivesnly the biconditionalis uniform.

1 Uniformity of conjunction, for example, would require that a conjunction be
false whenever one of the conjuncts is. But since the value contagious, this
is not the caseConsequentlygonjunction is not uniform

{ Similarly neither disjunction nor the conditional are unifornn "A¢. (p. 76)

Rem. 1.67 As with§ 1, anyway of interdefining connectives in classical logic will also VIOERE .
This is because not only are the connectives normalthey all agree on what happens
when a formula has a component with the vakig i.e.the compound formula is also
assigned the valug .

Bochvar chose andE as primitive connectives and defined:

o0 O =x x Of x O

"06 "O:=x O x O

'Ok "0:= 06 'OF 06 O (P. 78)

v £

E.g.1.68  Consider again the statemenisCx 0; 006 06 0 and 0FEO 6 0 OO0 asin
previous examples, this time #f .

X (0]

on
~
U
(@]}
—
U

P O P
T T F T
S S S
F T F

MMM 4440
MMM 444|5
M4 q4n 4O
MM 444
M4 4N+ O
—i .m. _| .m. .m. 'U)' _| .m. _|
MM 444
nv 4qvvn o 4 O
M —4n®q4n 4O

T T
S S
F F
S S
S S
S S
T T
S S
T T

Observe that,

1 Neither of the classical tautologies is a tautoloan
i The second formula receives the vakiemore often in’A¢ than it does iré N
orl . (p-78)

Lemma 1.6MNo formula in4¢ is a tautology and no formula i#f is a contradiction. (p- 80)

Rem. 1.70 Because& is contagious, every formula has the vafueon at least one assignment of
truth-values to its atomic components, namely on any assignment of-trathe that
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assigns to at least one atomic componeniTherefore, no formula is true under every
interpretation of A*. Analogously there are no contradictionsAh. (p. 80)

Lemma 1.71For every formuldin A it is the case that: [f U3¢ then® U §.
Proof: This follows from the Normality Lemma 1.40 sitAfeis normal.  (p.80)
Lemma 1.72Not every entailment that obtains in classical logic also obtaif#$ in

Proof: Again we can use the argumentO k 0 /C 0k 'Y O 0 k 'Y and assign
truth-valueson "Af according to the following trutitable, below. (Note thatk * is
identical tok *)

Colour KeyCyanor green- classical interpretatioriareen- classical valid argument
.- invalid argument ifaé anddifferences tcé (just under the® column)

b20SY 2S5 | NBE Ogrongd Nk IYvieskSyalyediogic(p. 82)

x
o~
—~

o

MY T Y o o OO =y P
=~
_|.m.ﬂ_|.m._l_l_|-ﬂ.w..w..m..m..w..w..m..m..w.ﬂ-_|_I_I.(n.j_lﬂ.w._|
=T w4 A w0 = D
T T I T T T T R R 8 R R R A
~
=T w4 4 A= A= N

0" R0 IR6" o Ro Ro IREEERer VO (0-00O ymm — — — =—

_I_' _I_I 1-| -nN--nN--nN- _| -_| NN - - - - _| -_| -nN--N--\N- _I_I _I_I -rl

Rem 1.73 The argumend 7C0 6 O which is valid in bot "andl (due to uniformity,) is not
valid in"A¢. Assuningthe premised to have the valuet, then the conclusion will have
the value$ if 0 has the valuel and0 has the value . (p. )
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o .
006 0TCO
ishoweveralso valid irAf. (p. 84)
. 20K @I N &Valide idgidly/ | £ o
Alphabet and Formulae
Defn. 1.75 ' Y | £ LIKF 0 S te2n@l 3Varied KagitasNctnaistsSE
1 aset n NN NN 8 of propositional variables
1 the set of standard connectives pME ¢NO ¢nd ¢ Nk C
together with their arities
f tKkS &LISOAlLfT OKFNYOGSNBR da0da YR a0¢é
Formulae ofA*are defined as with classical propositional logic. (p.86)

Rem. 1.76 Fronhofer use$ 2 L3yrabal¥ 2 NJ Wy @ # QREIWE®PS ySIAL GA2Yy Ay

Systemd SOl dza S A {
shall use

Defn. 1.77 Truth Functions 6R*usingdiy

LX | e a
for this purpose, consistent with thest of the text.

aLISOA L f

VE 0
A vo| T s F
T | F T T F F
S T S F F F
F | T F| F F F
Vo6° 0
vo| T s F
T| T F F
S T T T
F T T T

(p. 86)
00 0
vo| T s F
T T T T
s | T F F
F| T F F
Ok® 0
oo | T $ F
T| T F F
S F T T
F F T T

Normality, Uniformity and Regularity

Rem 1.78 We observe that,

 All standard connectives & are normal.
1 None of the standard connectives 8f\is regular (Obvious infractions arenarked

asredin the tables above)
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1 All standarcconnectives oidPare uniform blueentries).
Rem. 1.79 All connectives ifAPtreat the truth-values as if it were false. (p. 88)
Rem. 1.80 Good suggestive readings<of Fare:

i Fis not true
9 Itis not the case thaf
i Fis true doses not obtain (p. 88)

E.g.1.81 Consider again the statemenis 0;06 006 0 and O B0 6 0 OO asin
previous examples, this time W

N
[\

P O x P P o6 (P & Q P E Qo (P O Q
T T F T T T T T T T T T T T T T
s T T § T F T F s T F ¢ T T T s
F T T F T F T F F T F F T T T F
s T s T T s F T T s T T
s T & T & $ F § T $ F §
s T & T F $ F F T $& F F
F T F T T F F T T F T T
F T F T 3§ F F s T F F s
F T F T F F F F T F F F

Note that the classical tautologi®@s® 0 and 0 B0 6 0 O0 remain tautologies in
AA (p. 88)

Lemma 1.82he set of tautologies iAis exacthythe set of tautologies in classical logind the set
of contradictions iriA*is exactly the set afontradictions in classical logi¢p. 90)

Proof. SinceARis normal, it follows from the Normality Lemma 1.40 thizat every
formula that is a tautology itA*is a classical tautologgnd similarly for contradictions.

Conversely, iFis a classical tautology théfis a compound formul&Since the
connectives iriA* treat their components with the truttvalues as if they were false,
"AAtreats the atomic components of any compound formataan interpretation where

they are$ as if they were falsec{. Rem. 1.9) ConsequentIyATAassigns the same
truth-value to the formula that classical logic would in that cd$ereforeFmust be a

tautology inA”as well.

Similar reasoning applies to contradictions. (p- 90)

Lemma 1.8For every formuld&in APt holds that: If U  Fthen® UF

Proof: This follows from théNormality Lemma 1.48ince’ARis normal. (p- 90)
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Lemma 1.8&or every formul&in APt holds thatIf* U Fthen® U F

Proof: This can be shown by contrapositidfirst we show thatif an entailment does
not hold inA then it does not hold in classical logic eith®o,consider a set and a
formulaFsuch that w F. Then there is some-&alued assignmerg&on which all the
formulae in" have thetruth-value4, but on whichFhas the truthvalue&or s . We can
convertg to a classical truttvalue assignmeritby keeping thet and&assignments to
atomic formulae and switching ady assignments to atomic formulae &
assignmentsThe resultant classical trutralue assignmeriwill make formulae in
true in classical logi@his is so because compound formulaé ipehave ifAMas if their
$ -valuedatomic components have the val& and if any of the formulae inare
atomic, then sincét hasthe value4 on the originaI’Aanssignmenﬁ it will have the
value4 on the classicatuth-value assignmeritas well. BuFhas the valu&on the
classical truthvalue assignmeritfor similar reasons. (p. 92)

Again we can use the argumeéntO k 0 /C 0 k 'Y O 0 k 'Y andthis timeassign
truth-valueson "A”* according to the following trutiable.

(@]

X

=
—
3

K

=~

MM Eg=ET Ym0 4 44 -
TTTTAESEET T T 7SS - - | X
M4 4m2=n Y 4N 42 =mm =m0 4| D
nali i AR T I e s IO R B s T B o R I B N
M4 4m2=n? 4N 49m? =92 =m? g4 N

MTTTTTTMEESET T T SISl ST T
o= AT o~ — T e — —
4T MEE A o T -~ TS T T T
A4 T A TMEEEA AT A A s T T
AT A MmmE— AT A A TS

ColourKey: CLgreen ’ATAcyan Note theClassical valid argument (which had failed
g1 andA). (p. 92)
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. 2 OK @éseidm Operator

Defn. 1.85 Bochvarcombinedboth the internal and external connectives within a single system.
that system the external connectives were defined connectiuesig the internal
connectives and a special exteraalisertion operator H defined according to the
following truth table

The intuitive meaning JD is that0 is true. According to the following interpretation:

P |H

T T O0Ois true holds
S

F

F Ois true does not hold
F Ois true does not hold

(p. 94)

Lemma 1.8@he external version of anyé-k NB O 2 y pidy Odidkfidetby applying the
respective internal version of the connectiveo externally asserted formuta

&1 & = B H

Thus, both the internal and thexternal connectives can be defined in terms of , E
and'H E.g.we may apply the internal  to 'H) we get the following table for external

negation.
0 ‘ X ‘HD k X
T F T T F
S T F T T
F T F T T

(p. 94)

Similarly if we apply the binary connectivesHip and'H) we get thefollowing tables,
over pagefor the respectiveexternalbinary connectives. (P.96)
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Defn. 1.87 The externahssertion operator can be defined as folloWs=x *x 0. Compare,

W ok oxx 0 H ok ox o x 0
T T T F T T T T F T
F T F T s F T F T s
F T F T F F T F T F

Rem. 1.88 Note thatc is notinvolutive (an operation which, when applied ttself returns the

same value.The magenta row highlights the particular case. (p. 96)
0 k x X 0
T T 7T F T
2 F FE 0 8
F T F T F

Definability & Complete Set of Connectives

Def. 2.1  For an arbitrary propositional logicwith a set’ n N Nn 8 of propositional
variables

Ang-l NB O2yySOGADS "2 AargRS dficghhedtives, iffbete I & S i
exists a formuldin which there occur

9 at most connectives frorh and
1 at most propositional variable$ to

suchthat 1 P N k Fobtains.

A seth B N of connectivesscompleteiff every connective is definable hy

Rem. 2.2 A manyvalued logic is basically given by its set of connectjwesially the standard
ones plus sometimes additional on&¥e say that a connectiveis definable in a logic
T iff” is definable by the set of connectives af (p. 100)

Lemma 2.3 The binary connectives éf1,1 and’APare not definable ir.

Proof: Becausé¢ is contagpus, none of its connectives produces a formula with a
classical truthvaluewhen any of its intermediate components have the vaue
However the binary connectives of the other thregstems can produce such formujae
therefore none of these connectives can be defined using only the connectivés of

Lemma 2.4 None of the connectives difr", | and are definable ifAA

Proof: Because hconnectives i\ treat the truth-values as if it were falsgthe
system never produces formulae with the vakie Howeveltthe binary connectives of
the other three systems can produce such formulereforethey are definable iR

(p. 102)
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Lemma 2.5 All ofthe connectives o are definable in botf " andl|

Proof: Negation inA¢ is identical; to ngation iné N andl . Therefore we can define the
conjunctiong using conjunction, disjunction and negationl of(which are identical to
those of¢ ") as follows:

OF 0:=0F0 O 0 Bx0 OO0 Ex 0

We can define the other connectives’af in terms ok andZ usingstandard
classical equivalences. Alternatively, we give direct definition®foandd
analogous to the definition fdf above. Thus,

00 0:=000 Z 0&0 EOGD
06 0:=x000 E 000 EO&D

We can verify these byeans of truth tables. (p. 102)
0O F 1 Kk 0 w 1 o) 0 w X 0 O 1 w x 1
T T T T T T T T T FF F T F T F F T
T s s T T s s $ T F F T s s s s s
T F F T T F F F T F F T F F F T F
s s T T s s T s s § $ s s T F F T
s s s T s s s s s § § S s S s s S
s s F T s FF F s s s s s s F F T F
F F T T F F T F F F T F F T F F T
F s $ T F F s s F F T F s s $ $ s
F F F T F F F F F F T F F F F T F
0 O 1 «k 0 O 1 w 0 O x 0 w 1 O x 1
T T T T T T T T T T F T T T T F T
T s s T T T s s T T F T $ § § s $
T T F T T T F T T T F T T F T T F
s s T T s T T s s s $ s s T T F T
s s $§ T s s s s s s § s s § s s s
s s F T s s F s s s s s s F T T F
F T T T F T T T F T T F T T T F T
F s s T F $§$ s s F T T F $ s § s S
F F F T F F F F F T T F T F T T F
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0 6 1 kK x 0 O 1 4 0o O «x 0 E 1 O x 1
T T T T F T T T T T T F T T T T F T
T ¢ $ T F T $ s $§ T T F T $ § s § §
T F F T F T F F F T T F T T EFE T T F
$ ¢ T T s s T T $ $§ s $§ s s T T F T
$ § $ T s $ § s $ § s § s s § s § 8
$ $ F T § s § F s § s s § s F T T F
F T T T T F T T T F T T F T T T F T
F s ¢ T T F T $ § F T T F $ $§ s § §
F T F T T E T E T F T T FEF T E T T F

Lemma 2.6 Thel conditionald is not definable ir§ ".

Proof:Inl ,0 6 0 ishas the valud when bothd and0 have the value . But every
connective of " produces a formula with thealues whenits immediate components
(all) have the valué . Thereforeno combination of connectivsof € A can result in a
formula that expresses thie conditional (p. 106)

Lemma 2.7 The connectives dA™ are not definable ir§ 1,

Proof: No connective of produces a formula that has a classical trutlive when its
immediate components have thealues . Therefore, no connective &&Acan be
defined using connectives éf1 alone. (p. 106)

Lemma 2.8 Every connective Gf 1 is definable irl

Proof: Negation, conjunction and disjunctionér! are identical to those df . The
conditional and biconditional df " can be defined in terms of just these connectives.

Lemma 2.9 Everyconnective ofAPis definable irl

Proof:It can be shownthat 2 OK @ NR& SEGSNY I fl FeaSNI A2y Aa
equivalenceH) k x 0 6 D0 produces the following truth table for external
assertion.

X

nmY 4|lo
S
ﬂ'w'—|o
= nio

0
T

S
=

— < mj|or

T
F
=

Now, all connectives dh*are definable inl , since

1 all of the other external Bochvar connectives can be defined using the external
assertion operatoH Y R . 2 OK@I NR& AYUSNYylrt 0O2yySOi)
T FLftt 2F . 20K@I NR& Ay idSNYbBeLeOaydsp Ol A dSa |
(p.108)
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] 2yySOiGAoSa

Z 0k RO (identical truth function)

OO0k @ (identical truth function)

06 0kx0 OO0 kx 000

Ok Ok x000 Ex OO0 k 06 0 £ 06 O
H kx 006x0

x 0 k x0 (identical truth function)

00 00k 0O0 Z 0O D0 EOGO

OF Ok OFO O OO OO D kx x 0FE x 0
06 Ok OO0 E OO0 EBOOO kx OFE x O

Ok Ok 06 0 E0d O kOk 0

00 0Ok WO H kx 06x0 OD 06* 0
OF O kHE H kx 06x0 BEx 06x0
06 0k W6 H kx 00H k 06x0 & 06x0
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Definingb 2 NY I £/ 2y y $Od A @Svalued logik _ dzl I & A S 6 A

Complete Sets of Connectives

Rem. 2.10 Fronhotferhas shown that is powerful enough to define all the connectives df, A
and’A® He asksvhether ae all possible &alued connectivearedefinable inl . If
they are, then the standard / primitive connectivesl ofrepresent a complete set of
connectives. Recall that for classical logic there are complete sets of connectjves
np, dbz X

E.g.2.11 Is the connectivélwith the truth functionlT definable inl ?

VAR
bol| T s F
T T s T
s | T s S
F|F s F

Classical Case

Which formula defines the classical connecfiVebtainedby restriction toa  ?

= Q | P#0Q
T T T
T F T
F T F
F F F

The formula 0 B0 O 0 & O will work.

Procedure:We can build a suablefull conjunction for every row which resultsa,
then we combine the former disjunctively.

Remark: ¢ KA & LINE OS R dzNBRIdtRexsidplett@éfinitiort! 6 | & &

(p. 110- 112)
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Definability of Normal Connectives

Lemma 2.1l normal 3valued truthfunctions are definable ih .

Proof: A normal 3valuede -ary truth-function™can be described by the truttable for
a formula with a correspondingrary connective @i.e.2 © "Q

0 0 X 0 | a 0rnoO
T T 8 T 0
T T 8 S V]

é é
F F 8 F 0

1 where eachh N B 0 is one of the valued, s or &and

1 whereb is4 or &if all of the values to the left of the vertical bar in r&&re
classical truthvalues. (p. 112)

Firstly, for each roidf the of the truth¥ dzy O G A 2y Q& G NIzi®k,wél ot S GKI
provide a formula) that has the valud in that row and&in all the other rows.

We use the connectiveiwhich is definable ih asHh kx 06 DO .

Now, for each such row of the table, we defineas0 FEO E8 B0 where

H EGERAITGBEOEDI ®
0 ‘HD 0 OERAITTCHEE &E DT R
HDO EDHDO 1 OEAOxEOA
Each of the formula@ defined for a particular roviwill have the value

1 4 whenO0 has the value it has in roi@and
i1 &otherwise.

This can be seen in the following trutibles for0 :

X

F

5
i

X

0
F T
g &l
T F

0

T
51
=

e T

ul  EIES
—=n|

m —| o
=TT
EmY - O
TEIT|™m
e

—mmn| T

These truthtables show thaf) is4 iff 0 is4, &or$ as the case may be &in all
other caseghighlighted in magenta)Therefore the conjunctiod will have the value

4 in row "Qor which it is defined, but false inveryother row, since it will have at least
one conjunct with the valué&. (p. 114)
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Example For¢ Tt argumentsfollows:

0 0 0 0 |2 0orpno 'H

é é é é é AHD

T T F $ 4 wHD 0

é & é é é wD 'H wD HD 0

Nextwe provide a formuld for each row®f the truth-F dzy’ O i A 2tgble that Bzl K
the valued $ in that row and&in all the other rows. For each such rd@we define
1 asl K1 K8 El where
' EGEERAITGBEOE DI QAAAT OA
1 ‘HD 0 OEGRATTCHEE OE DT RAAAT OA
0EDO | OEAOXxEOA

Now we canconstructthe following truthtables forl

X X

| 0
& T

2 8

T &

0
& T
S

S | & s 8
Ef F &

Ro Ro| T

0
T
S

2 Bl | m

0

=

5]
&

Qo-—| o

Againhighlighted in magentathese truthtables show thad) is4 iff 0 is4 or &as the
case maye, orthat0 is$ iff 0 is$ , orthatd is&in all other cases.

Because the trutHunction Qs normal, at least on@ must have the valué in a row'Q
with0  $ .Inthat cas&® has the valug in row"@nd&in all othes.

Finally,we form a disjunction of the formulag for each row@vith 0 4orv  § .
This disjunctiorexpresses the function defined in the truthble schemalt will have
the valueb for each rowQuith © 4 orb $ and&for all the other rows, which is
the desired result.

There remains one special case where the truth funci@@moduces a &in every row.
Such a function can be definedlin using the conjunction

H B H EO E8 Ed

since this always has the val&e (p- 114-116)
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Eg.2.13 Construct a formula corresponding to the connective given by the following truth:table
0 1 |o0nNni1
T T | T H EH
T $ | § HEORKO
T F| T H EM 0
s T | T x H & MO EH
$ S $ O 0 EOROD
s F | s OB 0 EM O
F T F
F s S MOEORD
F F F
Above rightFronhdferhas provided auitable full conjunction for every row which
results in a4 or as . Normallywe wouldcombine the formewdisjunctivelyto form a
truth-table, however such a truthable is too large to fit on one page. Therefore we
have constructed separateuth-tables for each conjunatith the main connective
highlightedin magenta
H P E a 1 H P E 1 E D 1
T T T 7T T T T F F T
T T F s T T S S S S
T 7T F F T T F F T F
F s T 7T F s T F F T
F s F s F s s $§ s s
F s F F F s F F T F
F F T 7T F F T F F T
F F F s F F s § § 8
F F F F F F F F T F
H P E H D 1 D HP E D H D 0O E a Q
T T F F T F T T F T F F T T T
T T F s s F T T F T F F T F s
T T T T F F T T F T F F T F F
F s F F T T F s T T F s S T T
F s F s s T F s T T F s s F s
F s T T F T F s T T F s s F F
F F F F T T F F F F T T F T T
F F F s S T F F F F T T F F s
F F T T F T F F F F T T F F F
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O F x 0 E 1 E x 1 0O FE x 0 FE H D 1
T F F T T F F T T F F T F F T
T F F T s 5 5 3 T F F T F s s
T F F T F F T F T F F T T T F
s 5 5 3§ T F F T s s 5 F F T
s s $§ s s s $§ s s $§ s s F s s
s 5 5 3 F F T F s 5 5 3 T T F
F F T F T F F T F F T F F F T
F F T F s s 5§ F F T F F s s
F F T F F F T F F F T F T T F

H x 0 F 1 B x 1

F F T T F F T

F F T s s $§ s

F F T F F T F

F s s T F F T

F s S S s s s

F s s F F T F

T T F T F F T

T T F S s s s

T T F F F T F

Now wedisjunctivelycombine all theruth values under the main conjuncts in the truth
tablesabove filling in the truthvaluesfrom right to left, thus:

S S VS P
M 449 i<
MM 44 1mi<
MM q4n 1<
MM nnnmn<
MM mmmml<

AlthoughFronhdéferfilled in his table in slightly different order, the truttalues match
under the allimportant main connective the leftmost disjurtt above. (p- 118)

Thrm. 2.14 No nonnormal connective is definable in (with the standard connectives). Hence, the
standard set of connectives bf is not complete.

Proof: A connectives df are normal, therefore it is not possible to produce a formula
that has the valug when all of its constituents have oy andés.
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Rem.2.152 S R2y Qi 02y aA msiamal truthfundRoBsfcandai be iidtined in
because it is hard to imagine a situation in which a connective would produce-a non
classical value based on classical value constituents alone. (p. 120)

Defining NonNormal Connectives

TheTertium operator

According tof 0 dzLJS O A (eéending heshild¥id connectives! by the| connective
results in a complete set of connectivés{ 0dzLJSO1 A X mMdoc 0 (p. 122)

Defn. 2.16 Usingthe 1| connectiveallows us tadefine a neutral truth constanthus
no AN

We may also define the truth constarttandf as follows:

Rem. 2.17 Def. 2.16 implies that for all interpretatiosthe following obtain

LIS
"4
H & (p. 124)

Lemma 2.1 hestandard connectives ¢f LI dza G KS { OtidaiSuiie’a cagnpliSeNte (i 2 NJ
of 3-valued connectives.

Proof: For any¢ -ary connective of 3-valued logic, we can show that there is a formula
Gwith at most propositional variablegs I8 M & dzOK @ KM Kk G.

Note: By replacing all occurrencesrpfin Gbyt, n or f we obtain the formulag€ , €
and¢ respectively, which define thé {1)-ary connectives , ¢ and respectively

We proceed by mathematical induction én

Fort= ~ A& ARSYGAOITt 1 Borahy-ary @®meclivk &e mafdzi K
assume that there are threformulae¢ ,¢¢ andé which definethe ¢-1)-ary
connectives , ¢ and respectively, such that:

€ k Arpm YI argm MmH

© philosophy.org.za
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Esk ¢ nMBMm  Yr Aarm i

€ k nrpm YE Amm m (p. 124)
Next we define the following auxiliary formulae:

A ='Hy

A =M

A= B
These are interpreted according to the following table:

I
T
S
F

nmH| >
n-4ne
— 7>

For’A ,’A; and’A we obtain the following truth tables:

A Fla F
T[T 7
S F s
FIF F
A
F | F E X x F
T|F T F T F T
s | T & T T $ 8
F| T F F F T F
A
Fla x F
T|F F T
s | F s s
FI T T F

Now we defineG:= ¢ FA Oés FA, O¢ FA

Consider the firstlisjunct € EA k A B M MHEA .Ifn is false, then either
Adstrueand AP M MHis AMPBM N orA isfalse andhe value oG
is determined by the other two disjuits which may be analysed analogously.

Therefore we obtaic k N IMB M . (p. 126)
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E.g.2.20

40

Given the nomormal unary connectivés defined by

we derivethe @ NB aO2yySOGA@GSas o02yadalydaov

According tahe construction in the proof above, we get
wék w EA Ows EA OwyEA
k TEHEO™HE ¢B x¢& OT EM ¢

We cansimplify this expressing lroppingthe middle conjunctwhich is necessary
false(see below)to obtain

Wwék TEHE OT M ¢
whichby distribution ofwand O yields
Weék T EHEOH ¢ (p. 128)

We carverify that middle conjunct is necessary false byane of aruth-table.

H E Xan € B x  x ¢
F F T F T F T
F T § T T § 3
F T F F F T F

Given a binary connectve RSTAY SR 0@
4 s &
T|F s F
s |$§ $§ S
FIF & F
we canrepresent
€ kA Tk ABE A (2% column)
s KA T ki (2" column)
¢ kA "Hk AR A (3 column)
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According to the construction in the proof above, we get
A Ak ¢ BFA Oés BEA;, O¢ FA
k AR AEHAOT B AE x A O AR AEH A
BE RA &0 N o dnif thefiyst aBdRastoonjunét® we get
AR A O HAM A
HoweverH &M "Ais always false, sinékandx "Acannot both be simultaneously true.
Bycommutation and association ofwe can rewrite the middle conjunct above as
T ARTE A
Becausei B »#E k 1 B "E we can rewrite the step above as
TBARTBXA
which by association and double negation becomes
T B ARA
Since "AR'Ais either&or $ , we can simply drop the and simplifyA A to
A Ak ARCA O AR A (p. 130)

We can verify this by means of a truth table by filling in the truth values under
according to the given definition, thus

A A kA E x A O A E x A
T F T T T F F T F T F F T
T $ ¢ T T F F T s $ $ § &

T F F T T F F T F F F T F
$ s T T s s s s $ T F F T
s s $§ T $§ s s § s s s s §

s s F T s s s s s F F T F
F F T T F F T F F T F F T
F s s T F F T F $ $ s s 3§

F F F T F F T F F F F T F

Given the binary connectii@ defined by

|4 § &
T|T s F
s |$ s §
F|F s F

we can represent
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AE Tk A (2% column)

AE 1 ki (2" column)

AR "Hk x AEA (3 column)

According to the construction in the proof above, we get
AE Ak AFHAOT B AR x A Ox ARAEN ‘A
As withe.g.2.20, we can simplify the middle conjunct to
ARECA
which yields
AE Ak AFHAO AR A Ox AFEAEH A
This can be further simplified to
AE Ak AFA O AR A O AR A

whichis the formula used to definE in lemma 2.5 aboveWe have already verified
this by means of a truth table. (p. 132)

_dz1raASsA0l Qa . 2fR /2yySOGA@BSa
Defn. 2.22 We define the followindpold connectived.e.bold conjunctionandbold disjunction
(symbolised by and respectively) as follows:
V&0 :=x 00DV
0 1:=x000

The bold connectives are given by the following trigibles inl  usingOhD :

V&V v 0
L0 T S F 00 T S F
T T S F T T T T
S S F F S T T S
F F F F F | T s F

Recall thato I §idkh havethe truth-value$ in the shaded positions above. Also
note thatthe bold connectives are aldmownasstrong conjunction/disjunction(as
opposed to thaveak connectiveso  Qf R (p. 136)
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Rem. 2.23 The weak connectives are so called because they do not preserve the relations of the
excluded middle and excludexbntradiction whereas the strong connectives do
preserve them.

Lemma 2.24 he bold connectives can be used to express the law of the excluded middle and the law
of noncontradiction as tautologies in , thus

O 0 and* 0&* 0D

Proof: " 0o & x 0 0 « 0

T F F T T F T

s F $§ s S S s

F F T F F T F
Themagentacolumnsshow that theexpressions are tautologies. (p. 136)

Rem. 2.25 Rather than defining the bold caectives as in defn. 2.22 above, we could take them as
primitive (together withx ) and define thd conditional as

060 :=x 0&<0 or 060 =x0 0

x
x

Oon

oo 44 4lo
M 4N 94 4,0
Lk I
TN niee
M 4N 4n 40
MMM 4447
M4 41 40

V44
44400

Rem. 2.26 We may also define the biconditional k 0 using the bold conjunction of the
conditionals) 6 0 and0 & U thus,

60 & 0 00

C

0 k0O =

(P 6 Q & (Q 6 P)|PkD
T T T T T T
T § S s T T
T F F F T T
s T T T § $
s T § s T §
s S F F T $
F T T T F F
F T $ S s F
F T F F T F

(p. 138)
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Rem. 2.27 Recall from Critical Reasoning 18 that idempotence is the property of certain operations

when applied multipléimes not to change the result beyond the initial applicatiBold
connectives are not idempoterherefore applying thesameoperator more than once
can change the result. Thus,

P k (P & P P k (P P)
T T T T T T T T
S s F s S s T s

F F F F F F F F

The magenta columns show that the expressions above are not tautologies. Howeve
the following are tautologieas shown by the magenta columns.

P & P k (P & 0O & O (P P) k (P (P 0

T T T T T T T T T T T T T T T T

$ F s $ F s F s $ T $ $ T S T s

F F _F F F F F _F F F _F F F F F _F
(p. 140)

Rem. 2.28 Note: 0 & 0O O 0O U isatheoremhowever 0 E0 6 O 6 U is not a theorem

06

inl as shown by the magenta columns below.

N

0

@]

MMM 444|0
MNP 444|o
M 4N® 4 4=
MNP 444\
M4 4N 4=

A4 444N 4j0n

MNP 444|o
_I_I _I_I _l_l.(n. .U). .(n. _l_l.w. _| 8

444?44 4|0

Exporiation Rules

YOO k 0&'Y 60 isatheoremhowever

06 YOO & OFY 60 isnotathesem. See truth tables over the next two pagesere

the magenta columns show the difference.
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wWhkrFFaFFL g FRFRF GFFRFRFRFRFRRRFREF

WhkFrFFaFFL aFFFEF gL R LWL -

WhkFrFFaFFL gk RF GFFFRFRFRFRRRFRFRF

] T T T.S..S..S.F _I_l _I_l T T T.S..S..S._I_l _I_l F T T T .S..S..S.F F _I_l

D Lo e T e e R S I S I S T S T S T
] L N S P W N o I I oo N Ty I By Wy W I N Ty T T VI W TR T
FEEFEFRFRFRFRFF G000 -0 -00 0okl LW LWL LW W
~FFFFFFRFRFRFRFRFRFRFRFRFRFRFRFRRRRRRRFRFF

S T T S oy S T B TR I S Sy SO TR TR T

O T e T e e T o T S T e I Sy TR S T

(p. 142)
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Ne)

wokFFFFFFFFFFFRFRFRFRFER GFFFRFRFRRRFRRE

FhFogpaollli-EFRF.goaobllb-RRFog.g.agd LW
FEFopFFL gk RFRFRF o FFRFRRRRFRRF
e T N L VA N T T T T I8
e LI e 1 e P | I § RPNy NI NI NI NI I T T TR TR T

T T T T T T T T T.S..S..S..S..S..S..S..S..S.F _I_l _I_l F F _I_l _I_l F F

el T L F e e e T T T e g T T TR
el il ol R e e e N e e TR e e e Sl ol o TR
e T N L 7 LA N TR N T T T
FEFopFFL gk GFFFRFRFRRRRRRF

T T T T T T T T T.S..S..S..S..S..S..S..S..S.F _I_l _I_l F _I_l _I_l _I_l _I_l _I_l

(p. 142)

o

Note however that when the direction of the major implication goes the other nay 0 E'Y

we do have a tautology. See below
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el e P N I I e e v 1 Iy Iy iy o e PN | B TR TR
wlFFF GHFFL g L o FF g FLW -
L R e I I e I e N N I o 1 N I I N I I B
wkFFF GFFL gk RFRF GFFFRFRFRFRRRRE
O EFFFRFRFF. .00 000 b B L L L LWL LWL L L
wFFFFFFFFFFFFFFEFFRFRFEFRFRERFERERRERER
alFFF ool Ll lEFRFRF . .ol lli-RFRF.g.g.omd LWL
wkFFF GnFFL gk RFRFRF o FFRFRFRFRRRE
P L e e o 1 I I e I o R PN TR PN I B
T T S T N TN TN TR TR TRN TR TR TRN TRRTRNTRR TRR TS

(P. 144)
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Comparing Bold and Weak Conjunction

B L I 1 8 B | N W N T A TR
Bl OkFkFFF.g.gbF.gll
Ol .yl OkFFF.g.g.ed LWL
wFFFF.GFFFEF wOlFFEFRF.GFFFF
L T N I L | POl | N LN T g T
Sl . WL gyn L LWL L FHFEFS . .l
O+ F .i0.00-00 LL LL Ol F ... L L LL
B L o 1 O N I Y | N W N T N T
Sl . WL gyn L LWL L FEFFEY oF .ol
Cl-F .yl COkFFF.g.g.eod LWL
wkFFcFFFFFRFRF wWFFFRFRFRFERRFE
B L e 1 N N Y | N W N T P T
Bl ] OkFkFkFF . g.gbF.gt
O+ F .00 LL LL Cl-FF ... L L L

Note that the formulae atight are not tautologies are as shown by the magenta columns.

(p. 144)
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Which Classical Tautologies Obtain?

Fronhdferlists the following classical tautologies. The ones highlightedodobtain.

000 k 00D O 0 k O 0

OFO0 k O RO 0&0 k 0 &0

0000Y k 0060 OY 0 0 Y k O 0 Y
OFEOFEY k ORO RY 0& 0&Y k 0&0 &Y
006 000 006 0 0

006 06 0RO 06 06 0&D

OED 60 0&0 60

x DFD k x0& 0 x 0&0 k x0 x 0

< 0&0 6 x 0G0 x D& 0 6% 0&D

x 0RO 6 x0 x{ x0 x0 6x OED

x 0 0 6x0BxD * OB 6x 0 0

x 6000 6 x0&x b xb&x b 6x 500
OEOOY k ORO OOEY OOOEY k 000 EO0OY

0& 0OY 6
0 OFEY b
OO OO kO

0 ZO 0 EY

000 & 0DOY 6 VOO&Y
V&0 O0&'Y 0&0 O0&Y 6 0& 0OY
0 0 EOD Y 0 0 EO Y 60 OFRY

000 B0 k0

0 1&02060
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Proof. Fronhoferprovides proof that the highlighted statements aret tautologies by means of full
truth-tables, however the process is very laborious and time consuming. Instead we shall use the
shorter truth table technique learned in Criticad@soning 09 to show that the first highlighted
statement is not a tautology and leave thawainder as an exercise.

We begin by writing out the first highlighted statement as above.
X 0&0 6 x 0O 0

If it is a tautology there will appear o @ dzy RSNJ O2f dzYy 2F Ala &F 22N 02\
If, in classical logic, the statement is contingent, the& will appear an under the major connective

on one or more of the rows of the full truttable. However in 3valued logic a contingent statement

may have ar&or as under the major connective on one or more of the rows of the full trtzhle.

Therefore if we assigan&or as under the major connectivand find no contradiction in doing so,

we know that the statement is contingent ahence not a tautology. We may proceed with testing

eitheran&or as first, but in this case we shall test first, thus

x D&0D 6 x0&x 1
$

Next we attempt to fill in tuth values under the remainingplumns that would beonsistent with
this. We know that in 3valued logichat whena4 implies a$ it yieldsas , therefore we assign 4
to the operator with the largest scope on the left and aon the right, thus

x 0&1 6 x0O 1
4 $ $

We continue in this fashion assigning consistent tratfuesbelow eachcolumn of the truth table.

z

x 0&1 0 x0 Ox1

4s &S s $ssSSS
We find no contradiction in consistently assigning the tru#tiues as above, therefore there is as
least one line of the full truth table wherega appears under thenajor connectived . Therefore
the statement is not a tautology. There is no need to proceed fuitther testingfor the possibility

an &under the major connective because the presence of evensoneder the major connective is
enough to render the statement not a tautology.

Hint: When testing the remaining highlighted statemefdstautologousnessbegin by assigning a
$ under the major connective because, as will become apparent, there is at least one row of the full
truth table for each such statement that features aunderthe major connective
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T-norm and Fconorm

Rem. 2.29 When we speak of conjunction or disjunctjahe weak connectives, like the bold
connectives, meet the following minimal requirements that have been proposed in
general forthe conjunctive or disjunctive connective, as the case may be.

1. Conjunction and disjunction are both associative,
0 0 Yk O 0 Y
2. Conjunction and disjunction are both commutative,

0 Ok0 O

3. Conjunction and disjunction arendecreasingn both argumentsi.e. Using
the rankingd $  &for all interpretationsg holds that

E NOE *E n° ""EandE Nt6E TE E Rt

4. If Bis a conjunctive connective, then'fis4, then"EZ Ehas the valuef 'E

5. If Ois a disjunctive connective, ther'is & then"EOQ"Ehas the value ofE

Defn. 2.30 Given a linearly ordered set of trutfalves withd4 the greatest and&the least element:

A connective fulfilling the conditiond &is called &-norm and
a connectiveulfilling the conditions 6Ois called a&-conorm. (p. 156)

Lemma 2.3T-norm and tconorm operations that satisfy conditions & above will also satisfy:

6. "EE’Ehas the valu&if either "Eor "Ehasthe value&

7. "EQ’Ehas the valué if either "Eor "Ehas the valuet

Proof6: Assumehat "Eis & then if'Eis 4 then "EE"Eis & (4 above + commutativity).
Since each trutivalue 4, being nondecreasing implies th& Eis also& for every
value of E

Proof 7 Assume thatEis 4, then if'Eis &then "EQ"Eis 4 (5 above + commutativity).
Since each trutivalue &, beingnondecreasing implies th4EO'Eis also4 for every
value of E

Analogous proofs can be constructed febeing&and4 respectively. (p- 158)

Lemma 2.3Fand& are thorms whileQand are tconorms.
Proof. See the truth tables beloand the tableslefining& and , defn. 2.22above.
1. Associativity Statements expressing association are tautologies.
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2. Commutativity: Thedefining tables are symmetric

is non

3. NondecreasingEvery row and column of the tables defini&gnd

decreasing from bottom to top and right to left.
4. Obvious from the tables defining and &*
5. Obvious from the tables defining andn*

(p. 158)

6 R

*k_06 9
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k (P

Q & R)

&

P

(P. 160)
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Lemma 2.3%onditions 2 5 of Rem 2.29 abowniquely determine classical conjunction and

disjunction.

Proof. Using only the commutativity criterion yields theléaling 8 symmetric truth
tables includingolouringafter Fronhofer

T F T F T F
T|T T T T
F| I 1 T F
T T F
F F F

The magenta tables must be excluded because they are not nondecrgasing
condition 3of Rem 2.29(Check bottom to top and left to right in each cagéhg cyan
tablesmust be excluded for being neither conjunction nor disjunctianconditions4
and 50f Rem 2.29The remaining unshaded tables are the desired tathles for
disjunction above andomjunction below.

Comparison of Logics

(p. 162)

There are several ways to compare different logical systems, one of which is to compare their sets of
tautologies and contradictions. Up till now all our semantic conceggautology, contradiction,
validity, entailmentetc. havefocused on the truth valud. The results are not so encouraging since
¢ 1 and’A have no tautologies, although does.Fronhoferpointsus tovardsalternatives (p. 164)

Rem 3.1

We can now define tautologies in terms of designated trudiues:

In ana -valued logic, it is customary thistinguish a subset of truthalues of
designated Depending on the intended application of such a logic the designated truth
20KSNJ 0NYzi K @ f dzSa

values includé I y R

Gy 2 i

0l Ré€ @

Designated Truth Values

Iy e

as

(K G

1 A formula is a relative tautology iffhas a designated truthralue on every interpretation
91 If only the truthvalue4 is designated then we have the definition ofaautology (properas

we have been usingp till now; i.e.a formula that always has the trutbalue 4.

9 If both truth-values4 and$ are designated whavea so calledjuasitautology. (p. 164)

Quasitautology

Defn. 3.2 A formulaFis aquasttautology iff Fis never false.
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Rem 3.3 Note that in classical logic theoncepts otautologousnessand quast tautologousness
coincidesince in classical logicformula that is nevefalse isalways true, andice
versa

However in dvalued systemghe concepts of tautologousss and quasi
tautologousness do natoincide

E.g.Althoughé 1 and’2 have no tautologiethey both have quadiautologies The
formulad & 0 is a quastautology in both systems (as well ad i).

L6 x 1 1 O x !
T F 4 T F T
S s S $ S s
F T F F T F

(p. 166)

Rem 3.4 Quastitautologes are of interest as a way of avoiding falsehood as mutdusslogies
are as a way a#mbracing truth.

The concept of gasitautologiesis another way of generalising the notion of a classical
tautology as a formula that is never false rather thame timat is always true; therefore
the concept is also of purely theoretical interest.

If we have reason to believe that the simple classical tautoldi@sd and6 k & should remain
tautologies within a 3/alue system weahould preferl overég 1 and’AE. However, we may we
prefer quasttautologies over tautologies (properthus:

Il 6 ! l o !
T T 4 T T T
S $ S s $ S
F T F F T F

I Kk | | k I
T T 4 T T T
S s S S S S

F T F F T F

Note: Every classical tautology is a qutsitology in both¢ 1 and’A andvice versa(p. 166- 168)
Proofs follow.

Lemma 3.5 The set ofA guasttautologiescoincides with theset of classical tautologies.

Proof: Let¢ be aquasitautologyof "2, Then by definitiord does not have the valu&
on any assignment of trutivalues; and thereforé does not have the valugon any
classical interpretation.

SinceA is normal, it follows from the Normality Lemma (1.40) thatan only have the
value4 on any classical interpretation, therefoégemust be a tautology of classical logic.
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Converselyif ¢ isa formula that is not guasitautology of A%, then by definitioré has
the value&on some of its assignmesibf truth-values ifAf . Sinces is contagious in
"A¥, thistruth-value assignment must be a classical assignniefullowsfrom the
Normality Lemma that¢ hasthe value&on this assignment in classical logi
therefore ¢ camot be aclassicatautology. (p. 170)

Lemma 3.6 The set of 1 guasitautologiescoincides wittthe set of classical tautologies
Proof: This proof follows again from the Normality Lemma as above.

The converse claim, that a formuahat is not a¢ 1 guasitautologyis also not a
classical tautology is equivalent to the claim thdbanula¢ that hasthe value&on
some of its assignments of truthalues irg 1 will also have the valu&on some
classical assignmenf truth-values.

The restated claimbove holdgrivially that if thetruth-valueassignment on which
has the valuein & 1 is aclassicahssignment of truthvalues.

According td=ronhdfer we need to establish that if a formutahas the valu&on
some nonclassicahssignment of truthvalues irg r", then¢ will alsohavethe value&on
someclassical assignment of trutralues irg n

In order foré to havethe value&in € 1 on anassignment of truthvalueson which one
or more of itsatomic components hsthe values , uniformity must have overridden
the s (s)at some poinin favour of classical trutkialues(s).

At each point where uniformity overrodbe $ (s), the same classical value would have
resulted if thes (s)had beertQ & &PENJA Y 4G S| R® 6/ 2 YthdENBE GKS RS
truth functions)

Therefore, if we replace all thie (s)that the 3valued truth assignment assigns with
either 4Q a &PaNaill have he same truthvalue on the resulting classical trutalue
assignment as it did on th®valued truth assignment (p. 172)

Lemma 3.7 Everyl quasttautology is a classical tautology.

Proof: It follows from the Normality Lemma (1.€hat if a formula consists éiQ a 2 NJ
$Qa 2y Fftft Ay dSNLINBIGI (4Q2nyal classicai ikt&rpfetations. OF y 2

However theconverses not so straightforward.

Lemma 3.8 Every classical tautology that contains only negationjwtction, anddisjunction isal
guasttautology, howeversome classical tautologies containing the conditional or the
biconditional are nbl quasttautologies.
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Proof: FromLemma 3.6it follows thatevery classical tautology that contains only
negation, cajunction, and disjunction isla tautologybecause negation, conjunction,
and disjunction i are defined in the same way #r'. However there are instances of
classical tautologies containitige conditional or the biconditionahat are nd |
quasitautologies.E.gx 606 D6 & x 66 0 is a classical tautology containing a
conditionalthat is not a quasiautology n |

x 1 6 x 1 b6 x x 1§ |

T T F F T F F T T T
F s T s & F s s T 3
F F T T F T T F F _F

Alsox 0 k x 0 is a classical tautology containindpiaonditional that is not a quasi

tautology inl
X | k X |
T & F T
$ 4 § S
F & T F

(p. 174)

Lemma 3.9 The set ofATAquasitautoIogies coincides witthe set of classical tautologies.

Proof: The only formulae that are not tautologies'ﬁlﬂ* but might bequasitautologies
are those which are atomic formulae because no other formulae can have thesvalue
in A” But such formulae are neither classical tautologiesquasitautologiesin AR
since they can have the val&e So the set of quasautologies and tautologies is the
same ifARand we have already established that that the se’ﬁﬁ‘ﬂautologies

coincides withthe set of classical tautologi@sLemma 1.82 (p. 176)

Summary of Quastautologies

1 Classical tautologies and qu#autologies coincidén € N Ak and AR (Lemmata 3.5, 3.6 and

3,9)
1 Everyquasitautologyin| is a classical tautologiemma 3,Ybut the converse doerot
necessariljhold. (Lemma 38) (p. 176)

Quasicontradiction

Defn. 3.10 A formula is uasicontradictionif it is nevertrue; therefore in any 3alued systenit
always has the valugor s .

Lemma 3.1The properties of quagautologies in 3valued systemarealso the case foquast
contradictiors. |.e.
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1 The set of quascontradictionsin aE "APandg " coincides withthe set as the
set of classical contradictions.

1 Everyquastcontradictionsm| is a classical contradiction; however

I Some classical contradictions are mgoiasicontradictions il

(p. 1B)
Quastentailment

Rem. 3.12 Tautologies were originally considered the essence of logihémréms in case of
proof-theoretical approaches). However a more recent approach t®tsider logical
consequencer entailment as basic. Tautologieanthen be derived from entailment
as formulae which follow from nothing

Defn. 3.13 A set of formulaen quasientailsa formulaF, in symbol$ U F iff there is no truth
value assignment on which each of the formula@ imas the valuel or$ whenFhas
the value&; i.e.whenevereachformula inn haseithera4 or$ value then so doed~

An argument g is quasivalid iff N quasientailsé .

Lemma 3.14&very quasentailment iné€ 1,1 | A and’APis a classical entailment.

Proof: If a setn of formulae quasentails a formuld=in any of the four logicabove
then no interpretation maps all formulae ofonto 4 or$ while mapping-onto &

However there is no classical interpretatian which all of the formulain n have the
value4 while Fhas the valu&in that logic. (Of course there will be no vakiein any
classical interpretation.

Since all the above logics are nornigfollows from the Normality Lemma 1.4bat F
has the valuet on all classical interpretations, which means that the entailment obtains
in classical logic. (p. 180)

Lemma 3.1Blot every classical entailment is a quastailment ing A1, A andAR

Proof:countere.g.1: The classically valid argumémC FOFis not quasialid inAR

|
omm | O
|

al - Bl
Ny T N

Note that whenFhas the value , the conclusiorrOFis false.

Countere.g.2: The classically valid argumétix F/CGis notquasivalid iné N1 or
pE (although it isvalidin all three of these logics).
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F o x B U G F E x P U G
T F F T T T T F F T T T
T F F T T § T F F T T §
T F F T T F T F F T T F
s s $§ s T T s s s § T T
s s § s T s s s s § T S
2 8 & 8 F E BN BN BN BN A
F F T F T T F F T F T T
F F T F T s F F T F T $§
F F T F T F F F T F T F
Note that both tables are identical. (p. 182)

Rem. 3.16 Some classically valisiguments are also quasalid in mae than one othe four
systems above

E.g.1: Theclassically validrgumentFwG/C Fisquasivalid iné 1, | and A

F
T

MMMV 4447
M4 40?40
e e e e e e e e L i
MMM 444\
'I'I'I'I'I'I'I'ITI'I'I'I'ITI—|‘H:l
M4 941?40
44444444 4|<
MMM 444\

TN e

T
T
S
S
S
F
F
F

: The classically valid argumeRt CFOGis quasivalid ing 1,1 and 2.

m
Q
N

TP 444
AH4 444444+
MMM 444
M40 44440
M4 4?40
MMM 444
A4 A4 A4+
mmTme oo 4 4 4l
v 4q0vo o 4O
M A4 40

Summary ofQuastentailment

1 Everyquasientailment ofé 1,1 , A and’APis a classical entailment. (Lemma 3.14)

1 Not everyclassical entailmeris aquastentailmentin £ A1, AR andAR (Lemma 3.1%
(p. 184)
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Logic of Paradox

First proposed b¥lorencio Gonzéalez Asenjpl966and later popularized braham Priesand
others, Logic of Paradois a wellknownsystem ofparaconsistent logiavhichattempts to deal with
contradictions in ainconsistencytoleranté discriminating way(Wikipedia:Paraconsistent logjc
Logic of Paradox is formally given by

1 Yt SSySQavaldedogé 3 o
I Quastentailment

Vocabulary Dialetheismé F NP Y DiniEeSahd < ™ * #tuthQis the view that there areome
statements which ardothtrue andfalse (WikipediaDialetheisn)

Valid quasientailments ing "

oU 600 x oUx OEO
66 66 6 U 66 66 6 ok 60U x 66 6
x 86 x 60U 66 6 66 606 6 U 66 6
x x 50U o 66 60 x 606 *x &
bE 60 6 x o 60U x 806
x 90U 66 6 ouUx x o
om0 6K 6 x 86 6 U o
50 65 8 56 85U 8ES 6 SES
x 506 Ux 0§ 66 x 86U x &
All of the above are also valid entailments except for the loighlighted. (p. 188)

Not valid quasientailments in§ " (but valid entailments irg )

o 606 v 6 DisjunctiveSyllogism

60 66 6v 606 6 Hypothetical Syllogism

omd 6v 6 Modus Ponens

06 6K 6v x 0O ModusTollens

OFXx ov O Ex falsd excontradictione quodlibet segitur

See truth tables and discussion below.
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Rem. 3.17 Using arwformula in truth tables instead of a (finite) set of formulaesuitablefor:

1 entailment (properksinceFwGis4 iff both FandGare4
1 quasientailmentsinceFwGis4 or § iff both FandGareeither4 or s

(p. 188)

Disjunctive Syllogism

A o x A O B U B
T T F T T T T T
T s F T s s T s
T F F T F F T F
s § § § T T T T
TR EERERER
F F T F T T T T
F F T F T & T §
F F T FEF T F T F

Colour Key: dassical entailmengreen relevant cases fogquastentailmenthighlighted:
gréenand cyancorrect; fi@genigincorrect (p. 190)

Historical Example of Disjunctive Syllogism alBd falso quodlibet sequitur

Assumption Socrates exists and Socrates does not exist

1. w-elimination (left simplification): from Socrates exists and Socrates does not gkist
follows Socrates exists

2. w-elimination (right simplification) from Socrates exists and Socrates does not &kist
follows Socrates does not exist

3. "I-introduction (addition): from Socrates does not exist followsSocrates does not
exit ormen are donkeys

4. disjunctive syllogismfrom Socrates existgnd Socrates does not exit oren are
donkeysit followsmen are donkeys

ConclusionFrom a falsehood, everything follows. (p-190)
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(@]
(@]
(@]

-N-
-N-

Hypothetical Syllogism
A
i

B w B c U

‘ ; i | i | i

Colour Key: Classical entailme relevant cases for quasntailment highlighted:
greenandcyancorrect; incorrect (rearrangedp. 19)

.n_(/)

-

Modus Ponens

nw A*ﬂﬁw

MY A = e ©
= o = =

o]
i
T
T
T

T T ==

w
i
E
F
F

M 'n_—|i)>

Colour Key:Above and immediately belowZlassical entailme relevant cases for quasi
entailment highlightedgféehand cyancorrect; incorrect (p. 1)
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Modus Tollens

x
x

T O |
==y — 97 4 | "
T A 4 4|
7S ay v P
=H” =Y AT

T A 4 | w
== — == |
T[T | >

== 20 mm

Ex falsd ex contradictione quodlibet segitur

B is notquastentailed by A E x “A(Paraconsistence

A E x A U B
T F F T T T
T F F T T 5§
T F F T T F
s § s s T T
ERREERE
F F T F T T
F F T F T §
F F T F T F

Colour Key:No classical caspelevant cases for quasntailment highlightedeyancorrect;

Magehtsincorrect (p. 194)

Lemma 3.1& two formulae¢ and¢ of &€ " have no propositional variables in commamdif ¢ is
not aquasitautologythené v €.

Proof If ¢ is not a quastautology, then there exists an interpretatiohsuch thaté € is
false.Let £ be like€ except thatfor all the propositional variables occurring irg are
such that=f is$ . It then follows that:

€% § (from proof of Lemma 1.38)
17 &8 &

Since for all variables occurring irg , itis the case thatf =, thereforeé ¢ ¢fis
false. Hence v ¢. (p. 196)

Relation to Relevance Logic

Lemma 3.18 shows that the Logic of Paradox is a kiReklgfvance Logiahich requires that the
antecedent and consequent of implicatiosisouldbe relevantly relatedRelevance logic is intended
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to capture aspects of implication that are ignored by material implication in classicalftmuttional
logicE.gdF GKS &ddzy A& aKAYyAy3a GKSy G¢2 aljdad NBR
implication; however it seems intuitively false because a true implication must tie togeteer
antecedent and consequeirt a way thaisrelevart. (Wikipedia:Relevance logjBut we still have
the quasitautology"06 "06 "O in which the antecedent and consequence egtevantly
related.

F 6 (G & P
T T T T T
T T & T T
T T F T T
s s T s §

s s $§ s §

s T F T 3

F T T F F
F T s $ F
F T F T F

QuasiDeduction Theorem
Lemma3.19fAZ ;XK U Athen A X I Ao A

Proof:’A X 'K UZ'A means that whichever 6 & X has at least the valvé
then’Ahas at least the valvg . If we assume that each of tfi®@ > 'K Taveat
least the valves , then for each interpretatior, the following obtain:

1 If'A isfalse or§, then’A 6 ’Ais true ong according to the definition of * .
M Otherwise, ifA hasis at leasthe values ong, then’Ahasat leastthe value

$ becauséA T X UZ'Abutthen’A & "Ahasat leastthe values oné
according to the definition o * . (p. 198)

Deduction Theorem?
Note: There is no deduction theorem with and entailment proper).
It does hold thatA, /A6 "AU "A(essentiallyModus Ponens
But it does not hold thaBRU "Ad A 6; "A(see below)

E U

T] -r-l _r_l.m. .m. .U). _| _| _| >:
M 4N q4n 4|5
A4 4444444
M A4M® 4 4|y
_I_I _I_I _I_I.m..m..w. _| _| _| >:
_n _rl _rl.(n..(n..w. _| _| _| >:
M 4P q4n 4|5
n ) 7)) On
ne o —
MY 4. 47 oy

MMM 444>

T
S
F
S
S
S
F
F
F
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A simpler counter example is obtained for 1, wherdd 'A & “A which means that
A 0 ‘Ais a tautology, yet we know that there are no tautologie$ th (p. 198)

Enriched Logic of Paradox

Ly 2NRSNJ G2 aNBaOdzSé a2Rdza t 2y SalusingallifiefeftSR G2 Ay
symbotb { Ay OS ¢S | NB 6 Fof mudBrialfniplicatanivg \ill use2 adifdlicivs:

0DOZ DO
b,o\ T s F o,o\ T s F
T [ T s F T 1T s F
S T S F S T S S
F | T T T F | F T T

Rem 3.20 Thereis no distinctioras towhether the truth value o£ © € is4,& ors .

Now we getModus Ponenback:

A E AO A U A A E AO A U A
T T T T T T T T T T T T T T
T s T s s T 8 T s T s s T s

T F T F F T F T F T F F T F
s § s T T T T s $ s T T T T
s $ s s $ T s s $ s s s T s

$ F s F F T F s T s F F T F
F F F T T T T F T F T T T T
F F F T s T 3 F T F T s T 5

F F F T F T F F T F T F T F

(P.200)

W9 v NR O K-Bdrigztion Hzeoiem
Lemma3.2fAL K UZAthen AT X I A O A

Proof:A X 'K UZ'A means that whichever A £ X has at least the valvé ,
then’Ahas at least the valvg . If we assume that each of tfi®>~ 'K Tave at
least the valves , then for each interpretatios, the following obtain:

1 If'A isfalse org, then’A © "Ais true oné according to the definition o? * .
M Otherwise, ifA has is at least the valug on&, then"Ahas at least the value

$ becauséA T 'K UZ'A butthen’A © "Ahas at least the valug on§
according to the definition o? * . (p- 202)
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Hypothetical Syllogism

(p. 202)

Modus Tollens

FE- .

LL s LL

o
= I
w -
i
= I
= |

e

Colour Key:below and just aboveClassical entailmergreen relevant cases for quasntailment
highlighted:grééhand cyancorrect; fil@gentaincorrect

(p-204)

Now we have the same problem we had with.
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Degree entailment
So faiwe are familiar with two concepts of entailment:

1. truth preserving entailmentsuch as entailmenp(oper) based od
2. nonHfalsehood preservingntailment such aguastentailment

Now Fronhoferintroduces a third concept of entailmene. degreeentailment
Defn. 322 The three truthvalues4, s and&may be rankeds4 $§ &

1 We say that aet’ of formulae degreeentailsa formulaF, in symbols | F, iff
the value ofFcan never be less than the least value of the formulde. in

1 Anargument is degreealid in a 3valued systeniff the set of its premises
degreeentails its conclusion.

Lemma 3.2&very degreentailment of a formuldby a set of formulaethat holds inAf, AR EN
orl is a classical entailment.

Proof: In the case that all formulae inare true, then degreentailment requires-to
be true alsoj.e.we have a case alassical entailment. (p. 206)

Lemma 3.2 Degreeentailment is equivalent to entailment proper plus quasitailment.
Proof: Given the argument’ ¢ :

1 Assumé | _F then if all the formulae in are4, thenFmust also bet. Hence
* UF If howeverall the formulae il areat least$ , thenFmust also be at
leasts . Henceé U F

! Now assumé UFand' U F then if all the formulae ih are at leass , then
* U Fimplies thatFis also at leas$ . If however, all the formulae il areat
lest4, then® U Fimplies thatFis also at least.

1 Therefore' | F

Lemma 3.2Blot every classical entailment is a degezgailment ing : similarly i, A, and’AR

Proof: According to Lemma 3.1Bot every classical entailment igaasientailment in
gN | A and’A” But according to Lemma 3.24 abodegree entailmentmplies

guastentailment (p. 208)
The argument it which can be rewritten
066x06 & 66x6 66 6
00* 0 x 0
X 0 X 0

is quasivalid, but not degreevalid
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g

I 0 " w X "0 x ! ) " w X "L X !
T T T F F T T F T T T T F F T T F T
T F s F T s T F T T F s F T s T F T
T F F F T F T F T T F F F T F T F T
$ T T F F T T $ $ $ T T F F T T $ 5§
s T s T T s T s $ s T s T T s F s s
S T F T T F T s s S T F T T F F s s
F T T F F T T T F F T T F F T T T F
F T S T T § T T F F T S T T S T T F
F T F T T F T T F F T F T T F T T F
According taFronhdofer the above example was inspired by Modus Tollaris™ (p. 210)
Summary of forms of entailment
R I s 8
F il T S
1 entailment (proper) : green only
1 quasientailment : all cases
1 degreeentailment: all except magenta (p. 210)

A Derivation System for Classical Propositional Logic
FirstApproach
We require axioms and rules

1 Axioms: a certain set of good formulae which shall be true
1 Rules of Inference and/or Rules of Proaf: B/CG whereAX BandCare formulae
9 If our axioms are formu&awe require one or more rules of substitution.

Disadvantages:

1 Axioms and explicit substitution rules of inference make derivations longer.
1 Correct rules of substitution and their correct application mayrimky. (p. 214)

Second Approach

Defn. 4.1 Anaxiom schemastands for infinitely many formulae that have the overall form
exemplified by the schema.

Aninstance of an axionschemais defined as any formula that results from the uniform
substitution of formulae of the language for each of the letters occurring in the axiom
schema.

LCompareFronhéfeQd RS @St 2LI¥Syid 2F + /f+FaaAiAllt t NRLRAAGAZ2YI
Reasoning 21.
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Defn. 4.2

Rem 4.3

Rem. 4.4

68
Byuniform substitution we meanthat in any given instancéhe same formula must be
substituted for every occurrence of the same letter
Fronhoferwrites: F/ P (read:Finstead ofP) for the uniform substitution oPby F.

(p. 214)
Axiomatic Systenior Classical Propositional Logic
CLA(Qassical propositiondlogicAxiomaticsystem)
1 Axiom Schemata
CLWS 0060

CL20

(@]
CA
(@]
C
Oon
C
Oon
<

06'Y

on

cn
on
Ca

CL3x 06x0 0
1 Rule of Inference

Modus PonenéM.P.)

0andd 6 0 7CO (p. 216)

M.P. is also known aparation implication eliminationor the rule of detachment
0SOFdzaS Al lfft2¢6a GKS O2yOftdzaizy (2 oS

Each of the axiom schemata is in the form of a tautology, wjth and'Y servingas
propostional variable. See the trutitable forCL2below.

TTmTmTH A4 4|o
<-4+ -m-|on
<4 7n---m-|on
44+ ---|o
447 m--|on
-4+ --m-|on
TTmTmT—H -4 d|o
4444747 -H|o
AT AT AT AD

T AATTAA|~
I T I R
M T AAA A
R e R R e e |

CLlandCLZcan be verified as tautolagisin the same way.

1 Any instance oCL1to CL3will also be tautologouéproof by induction).
f Modus Ponenis truth-preserving.e.if 0 and0 6 0 are both true then so i8 .

(p. 216)
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Derivations
Defn. 4.5 Aderivationis a finite sequence of formulae, each of which is

1 designated as an assumption, or
9 is aninstance of an axiom schema, or
9 can be derived from earlier formula usiMpdus Ponens

Convention: The formulae designated as assumptions must begirhtia of
derivations If Fis the last formula in a chain of derivation then we speak of a derivation
of

Defn. 4.6 A formulaFofl is derivable from a set of formulae(symbolised U P iff there is a
derivation ofFsuch that all assumptions in the derivation are elements.of

A formulaFis provable (symbolised F) iff Fis derivable from the empty sét ).

E.g.4.7 In the following examplef a derivation Fronhtferuses the method of Conditional
Proof but does not explicitly discharge each assumptitwtwithstanding the same
rules forConditional Poof as i@ritical Reasoning Gply.

1. & CGonditional Proof Assumption (CPA)

2. "0&0 &0 ( CPA

3. &6 ' 6 & CL1&/0,' /1

4. ' 0 & 13M.P.

5. &0 ( 2,4 M.P.

6. ( 1,5 M.P. (p. 218)

E.g.4.8 The following example shows théatd 6 is derivable from 6.

1. x| CPA

2. x1 9 x" x| CLIX ' /0x "/1

3. x"gxl 1,2 M.P.

4, x"ox1 6 1 o" CcL3!"/0,!/1

5. 16" 3,4 M.P. (p. 218)

Lemma 4.9For adeductive system consisting of axiom schemata and ,h€ followinghold:

If* UA, then' a&J) Afor every superset sof .

Hence, in particular, Iff A, then * U Afor every set of formulaé.

Hence, in particular, A is an axiom, then U Afor every set of formulaé.
If* UA, then there exists a finite subsetef ' such that atJ A.

If Ais an element of , then® UA.

If* UAand' UAJ B, then’ UB.

= =4 -4 4 -—Aa -1
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Proof. The first five pointganbe triviallyproved from defn. 4.5 (derivation) and defn
4.6 (derivability). To prove the last point requires that we concatenate the derivations of
AandAd B, make the assumptions at the begging and then apply M.P.

Defn. 4.10 A derivation that does not contain any assumptions is callpbaf.

A formulaFis called aheoremiif there is a proof ending iR We call this proof éproof
of the theoremF¢.

E.g.4.11 The following proof establishes thatd 6 is a theorem.

1. 16 161 &1 CL1!/0,! 6 1/1
2. 16 161 61 6 CL2!/0,! 6 1/1,1/2
16 161 616!
3. 16161 616! 1,2 M.P
4. 16 161 CL1!/0,!/1
516! 3,4 M.P (p. 220)

Consistency

Defn. 4.12 In Critical Reasoning 16 we introduced #ast criterion for consistencgccording to
which:a ! y&tem is consistent if it contains (that is, can expre$sjraula that is not
LIN2E @I 6fS Fa | (KS2M0d®riingddrantoterg definikidds 28 4 1 SY d¢

1 Asetof formulaé is (syntactically)consistentiff there doesnot exist a
formulaFsuch that bothFandx Fare provable from .

1 A setof formulaé is(syntactically)inconsistentiff there doesexist aformulaF
such that bothFandx Fare provable from .

1 A setof formulae ismaximallyconsistentiff * is consistenand’ U Ffor any
formulaFsuch thatn® F is syntactically consistent.

Recall that becausine presence of a contradictioffro¥ F within asystem would
render every proposition a provable theorem2 & 1 Qa4 ONA GSNam@y F2NJ 02y
CNER Yy K| F S NIeicludeSstich gysténs Rafigiclass of consistent systems.

Defn. 4.13 A set of formulaée issemanticaly consistentor satisfiableiff there exists an
interpretation on which all formulae in evaluate to4. (p. 222)
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Soundness
Defn. 4.14 A derivation system for classical propositional logic is said sobadiff

1 Alltheorems are tautologies, and

1 whenever a formuld&is derivable from a set of formuda , thenFis also
entailed by .

Lemma 4.19 heCLAsystem is sound.

Proof: CLAis a sound derivation system becauskits axioms are tautologies and its
single rule of inferencéM.P.)is truth-preserving (cf. Rem 4.4) (p. 222)

Completeness

Defn. 4.16 Recall that we introduced the concepts of expressive and deductive completeness in
Critical Reasoning 16 by way of discussion. IResahoferis more succinct:

1 A derivation systenfor classical propositional logicdaid to beweakly
completeiff every tautology of classical logic is a theorem within the system.

1 A derivation systens said to bestrongly complete(or justcomplete) iff, in
addition, wheneveg set of formula“® entails a formuld, thenFis also
derivable from" within the system.

1 Aderivation systenis said to bedequatefor classical propositional logjikit is
both sound and complete.

CLAis both complete and sound fafassical propositional logic

Thrm. 4.17 For a formulaA of CLand a set of formulad| of CL, the following obtain

1 If" UA thennUA (Strong Completeness Theorem)
1 IfUA thenUA (Weak Completeness Theorem) (p.224)

To derive a tautology lik©O "06 OInCLAS Ydzald FANBUG NBGNAGGand y& F2N
k which do not feature on the axiom scheme@ifAin terms of only andd which do.
Defn. 4.18 0 O0 ;= 0 6 0

OFO:= 006x0

Z

Ok0O:=0060 00D whichisequivalentto 060 6x 0060  (p.224)
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E.g.4.19 To show thatO® "06 "0 is a theorem oCLA we first rewrite the formula as "0
"006 "O using the definition for disjunction above, then we construct a derivation for

the latter using onlyCL1to CL3and M.P.Thus:

1. x06 x°06x°06 060 6
X"06 X "06% "0 6 x 06 060 6
x"06% 06 "06 "0 &

06 X 06X 06 060 6

x "0 x "06*x "O 6
x &6 &0
2. x'00 x"06x 06 06O b
x "0 x "06x "0 & x "06 "0b6 "O
3. x"06x"0d6 060 6
x"09 x"06x 06 060 6
x "0 x "06x "0 & x "0d "0b6 O
4, x "06x 06 "00 "0 6
x"00 *x"06x 06 06O 6
x "09 x "06x "O 6
X“% ” ino é
x "06* 06 "06 "0 6
x"00 x"06x"06 060 6
X “06)( nO Z noé ‘O 6
x "0 x "06* "O 6
X,\QLJ ,\Qi)no
5 x "06* 06 "06 "0 6
x"00 X "06x"06 060 6
X “06)( nO Z noé ‘O 6
x "0 x "06x "O 6
X,\QLJ ,\Qi)no
6 x "06*x 06 "00 "0 6
x"00 x"06x"0d6 "0d O
7. x"06x 06 "00 O &
x "0 x "06x "O 6

X an) "Oé nO

8. x 00 x "06* O

CL1x 06 x "06* "0O0
060 6
x "0§ x "06x 'O 6
x "06 "06 "O /D
x "06*x "0 6 "0b "0/

QL2x "@0,x "0b x "@0,
06 "arY

1,2M.P

CL2,x "06% "0 6 06 "O/F

X086 x "06x 06
06 "0 /§

X 08 * "06% "0 6
X "06 "0 O /'Y

3,4 M.P.

CLIx "@0 )
x "00x "0d6 "0b6 "O/D

5,6 M.P.

CL1x "Q0,x "Q0

9. x'06x 006 "06 O CL3,; /0,&/1
10. x"06 x '06x 'O 6 x "06 "0 'O 9,7 M.P.
11.x "06 "06 "O 8,10 M.P.
We may therefoe conclude thatOO "0 "O is a theorem ofCLA (p. 226)
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Rem 4.21
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Derived Axiom Schemata and Derived Rules

CLDD 6 0 (cf.e.g.4.11)
CLD206Y O 000 6 06
H.S. (Hypothetical Syllogisnffrom0 6 0 and0 & Yinfer0 0 'Y

Trans.(TranspositionfFromd 6 0 6 'Y infero 6 0 6 'Y

(]

CLD3* 0 6

C-

CLD4) 6 x x

C-

CLD5006 0 6 x 0 d*

(]

M.T. Modus Tollenfrom0 6 0 andx 0 inferx

CLDIcan be used to prove that & 0 is a theorem.
First we rewrite & & 6 asc 6 6 x 6 (containing onlyd andx ), then we derive:
1. x66x 6 CLDX 6/0

A derivation along the lines efg.4.11 would also be possible. (p. 228)

Reconsider the derivation of the theoremiod "06 "O (or"00 "06 "O). Exept for
lines 8 and 9 of the derivation &ng.4.19above, the main purpose

is to derive "06 "0 "O line 11
fromx "0 x "00x "Oand x "06x 06 "060 'O lines8&9
Then line 11 isbtained from line 7 using M.P. twice.
From these formulae, we sdkat there is a general pattern of inference
that derives a formula of the forma 6 'Y
from the formulaed 6 1 and0 6 ‘Y.
This inference pattern can be introduced as a derived rule yielding:
H.S. (Hypothetical Syllogismfrom0 6 0 and0 6 'Yinfer0 6 Y.
The justification foH.S.can be constructed using the using the derived axiom:
CLD206'Yd 0060 6 06°'Y (p. 230)

Fronhdferreproduces the first 7 lines of the derivation below. Compare this to the
derivation of 00 "06 "O ine.g.4.19 above.
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1. 06 0O6Y © 060 6 0O'Y © CL1L,006 0d6'Y ©
06'Y d 060 6 06'Y /0,
00 0D6Y 6 060 6 0O'Y 006 'Y0
2. 06 06'Y 6 VOGO 6 VO'Y CL2p/0,0/0,'YI'Y
3. 006Y5H 1,2 M.P.
06 06Y & 060 6 06'Y
4. Qé'\(é - ) ngﬁj) 'Y/7,~
u~6 06'Y~é~oéoéoév ) u~égé'v~/o,
~06'\((3Qé})o'\( o) 060 6 DO'Y/IY
0O6YO 060 6 0DO'Y
5. 00YO6 00 0DB'Y 6 3,4 M.P.
0O6YOd 060 6 06'Y
6. 06'YD 06 0D'Y CL1p) 6 'Y0,0/0
7. 06Yd 060 6 0D'Y 5,6 M.P. (p. 230)
H.S. (Hypothetical Syllogismfrom0 6 0 and0 6 'Y, inferd 6 Y.
1. 060 CPA
2. 0O'Y CPA
3. 06YO6 060 06 0d6'Y CLDD/0,0/0,'YI'Y
4. 060 6 06'Y 2.3 M.P.
5 00'Y 1,4 M.P.

According to the above derivation, if we havé® 0 and0 6 'Y, whether or not they are
assumptions, we caderived 6 Y.

Rem 4.22 Using H.S. can drastically shorten the derivation’@ 00 "O ine.g 4.19 above

1. x "06 x "06* 'O CLLX "@0,x "3 (was line 8 above
2. x"06x 06 "06 "0 CL3;00, @0 (was line 9 above
3. x "0 "06 "0 1,2 H.S. (p. 232)

Trans. (TranspositionFrom0 & 0 6 'Y infer0 6 06 Y.

1. 06 06'Y CPA
2. 060 6 D6Y &6 06 D60 & CLD20/0,06 0/0,
06 06'Y 06'YY
3 060 6 0DB'Y 6 CL2,060 6 06'Y/0,
06 060D 6 06 DO'Y b 06 060 /0
060 6 06Y 6 06 060D 606 0DO'Y/Y
060 6 D6Y 6 06 06'Y
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4 060 6 06Y 6 00
DOUL O LOY O VO

5. 06 0060

6. 06 060 6 060 06
LO VOV

7. 060 6 06Y 6060

8 060 6 0VOY 6 06

9. 06 0O6Y 6 060 6

10. 06 66'Y 6 06 0O'Y

11. 06 006'Y

CLD3x 06 0

1. xx 0 xxxx gxx

2 xxxx ) Hxx0) 6 x0dxx

3. xx 0 x0Dbxxx

4 X B6 D 6 x B0

5. xx 006 xx0060

6. X006 x0560 6
XX 0DO0XX0D O XXVOU

7. xxB6xx D 6 xx 060

8. xx(0dxx D

9. xx000

CLDD 6xx O
1. xxx06x0
2. xxx 6% 0 6 56%x D

3. 06xx0

2,3M.P

CL1H/0,0/0

C~L1f)~6 6§ 0/ .
060 6 06'Y/D
5,6 M.P
4,7 M.P.

CL2D/0,0/0,'YI'Y
8,9 H.S.

1,10 M.P.

CL2X x 0/0,x xx x D/0
CL3xxx 0/0,x 0/0
1,2 H.S.

CL3D/0x x 0/0

3,4 H.S.

CL2x 0/0,xx 0/0,0/'Y

5,6 M.P.
CLDX x 0/0

7,8 M.P.

CLD3 0/0
CL3x x 0/0,0/0

1,2 M.P

© philosophy.org.za
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C-
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Cn
(@]
C-
(@]
x
x

60 6 0Oxx D

(The converse dfL3

(et}

4 66~x§6§xx66uo
xxU@xxD

5 XXQQGQ 06xx0 6
XXUOXXU

6. xx0060

7. 00xx0 6 xx06xxD

8 0060 6 *x06xx0

9. xxDoxx0D 6 x006x0D

10. 060 6 x0DO6*x D

M.T. (Modus Tollens)Fromd

1. 060
2. x 0
3. 0060 6 *x06x

E.g.4.23

6 0 andx 0, inferx 0

76

CLD2p/0,0/0 ,xx 0I'Y
CLD4D/0
1,2 M.P.

CLD x 0/0,0/0,xx O/'Y

4 Trans.

CLD30/0
5,6 M.P.
3,7H.S.
CL3 0/0,x 0/0

8,9 H.S.

CPA
CPA
CLD5)/0,0/0
1,3 M.P.

2,4 M.P.

If the economy is sound, then the unemployment rate is low or spending is high. If the

unemployment rate is low, then most people are well off. If spendiggis, then most

LIS2 Lx S
not sound.

- NB

oSt

2FF o LGQA Theseivre theNddoBomy ik I {

The above argument can be symbolised as:

%6 503
567
367
x 7
Cx %
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Fronhoferrewrites the first premise a%0 * 5 6 3 . This is possible because of the
logical equivalence’) Oy k * 1) 6 i ; however strictlythe justification forthis move
should have been included in the proof that follows

1. %0 x50 3 CPA

2. 507 CPA

3. 307 CPA

4, x 7 CPA

5. x5 2,4 M.T.

6. x3 3.4 M.T.

7. x563 0 x30xx5 CLD%: 5/0,3/1
8. x30 x5H63 06xx5 7 Trans.

9. x503 06xx5 6,8 M.P.

10. x50 3 6xx5 g xxx50%x x58 3 CLD% 56 3/0,xx 5/1
11.xxx 56x x 59 3 9,10 M.P
12.x 56xxx 5 CLD4 5/0
13.xxx 5 5,12M.P.

14.x x 56 3 11,13 M.P.
15. x % 1,14 M.T.

Rem 4.24 The derived axiom schema and derived r@es a convenience for constructing
derivations.Since the axiom schemata GLQL3 together with the rule M.P. alone form
a complete derivation system for classipabpositionallogic, additional axioms and
rules do not increase the power of the system or its soundrasse they are all
derivable from within the system that was sound to begin with. (p. 238)

Deduction Theorems

Rem 4.25 Given ay logic with semantic concepts of entailment and tautology and with
syntactic/prooftheoretical concepts of derivation and theoranit is an interesting
guestionas towhether the followingheorems obtain in such a logic.

(Syntactic/ProofTheoretical) Deduction Theorem

1 A formula’Eis derivable from a set of formuld&, X SE of formulaeiff "E 6 "E
is derivable fromiE, X $E . For the special case ®f p, a formuld’Eis
derivable from a formulEiff "ES6 "Eis a theorem.

(Semantic)Deduction Theorem

A set "E of formulae entails a formulEiff "E6 "Eis a tautology
i.e. "E UEiffU"ES "E (p. 240)
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Rem 4.26 The (Syntactic/Proefheoretical) Deduction Theoreis of great practical importance in
deriving theorems since it is usually easier to defisfeom "Ethan to derive’EO "E
directly.

The(Semantic) Deduction Theoreatiows entailment to be mapped onto the language
being used (Compardhe implication connectived and® (our notation)with the
Logic of Paradox.

Both of the above theoremsoincide with a sound and complete calculugp. 240)

Syntactic Deduction Theorem

Thrm 4.27 For propositional formula&and"Eof classical logi¢Eis derivable froniEin CLAIf "EG
“Eis a theorem irCLA

Proof:1f "EO "Eis a theorem, then there exists a proof / derivatior’Bb "Ein CLA We
can add'Eto this proof as the only assumption and then use MoRlerive"Efrom "E

and"E6 "E
0 "E CPA
1 € Justification 1 1 € Justification 1
€ € é o} é é €
e-1¢ Justificatiore -1 e-1 ¢ Justificatiorg -1
¢ "EO "E Justificatiorg 3 "E6 "E Justificationt
¢+l 'E ¢,0M.P

Given a derivatioh of "Efrom the only assumptioiEconsisting of the sequendg ,
n X X 3N wheren is"Eandry is"E we can produce a new derivation in
which,inter alia each of the formulaéE6 i ,"EO R = "0 ff ,"E6 i occurs
as a theorem.

Eachof] ,f4 £ X 31 will either be an assumptiomn instance of an axiom
schemaor will follow by M.P.from previous formulae in the derivation.

f Inthe case thaf] is our assumption{ =3 ="H, we derivery 6 1} as we
did ford 6 © ine.g.4.11 above.

1 Inthe case thaf) is an instance of an axiom schema from sf@f” , we may
add the following lineso derive’EG 1y in the new derivation, thus:

a n by the relevant axiom schema

G+1 n 6 "E6 NQ CL1n I'E'R'E
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d+2 "EO N & +1,8 +2M.P.

Note thata is the step i to which step®f™ has been shifted

f Inthethird casen) follows by M.P. from earlier formulag andr} 6 r'];;;:;in
the sequence) ., = & I ,i.e.wheren andr 6 n:.are amongj ,
nE X | .lfsowealready havéEé 1} and™Ed 1 6 N inthe

new derivatiori , say on linest and¢ (byinduction hypothesis)Three more
lines are required to derivéEd 1 :

a "E6 N

e

¢ "E6 f 6n 6 CL2'B'ER I"ER /N
"E6R 6 "Ed N

¢+1 "EONR O "EO N £.¢ M.P.

€+2 "EO N €+14 M.P.

Notethat € is the step ifi  to which®f™ has been shiftedp. 242- 244)

E.g.4.28 Using the above methodpastruct a derivatiorestablishingthat 66 6 6 ¢ isa
theorem.

In example 4.8reproduced belowEronhéfershowedthat & 6 6 is derivable from 6.

1. x 0 CPA
2.x00 x606%x0 CL1x &/0,x 6/0
3.x806x 0 2,1M.P.

4. x56xH 6 606 CL3%/0,6/0
5. 000 43M.P.

We can now construct a derivati@stablishing that 6 6 © 6 6 is a theoremThe
derivationbelowis set out so thalines containing conditionalshose consequents are
formulae from the earlier derivatiorare marked withared numeralto the rightfor the
line numberof that derivation According td-ronhéfer shorter derivations are also
possible E.g.there is no need taerive the formula on line 1&ince it already appears

on line 6. (p. 244)
1. 00 x066x06 0% 0 CL1x 0/0,x 0 6% 6/0
2. X006 xH6xd 60O 0O CL2: 0/0,x 0 6% 06/0

x36 xBOxd 6 xB56xd x 8/
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x
Oon
x
Oon
x
Oon
x

7. 06 x606x0d 6
K86 x 56 xB6x D
8. 00 x00 xH606x0d

9. x0060 x006 x66x0 6
X00X0 OX00 X00XO0
10.x86% 6 6 x 56 x56xd
11X 866 x 8 6% B
12.x566x0 6 006
13. x66x0 6 066 6
K66 xB86x0 6 068
14x 00 x60x0 6 6066
15.x 00 *x60x0 6 666 o
X000 X00X0 0 X000 006

Z ”

170060 606

© philosophy.org.za

2,1 M.P.
CL1X 6/0,6/0
1.3,4 M.P.
CL1x 6/0,x 6/0

73

CL1x 606 x § Ox
x 0/0

0/0

2.7,6 M.P.

CL2¢ 0/0,x 0/0
x 8 6% 8I'Y

9,8 M.P.
3.10,5 M.P.
CL3%/0,0/0

CL1x 6/0
x56x8 6 866 /0

4.13,12 M.P.

CL2x 6/0,x & 6 0/0
006 06/l'Y

15,14 M.P.

5.16,11 M.P.

(P. 246)
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'y TEA2YFGAO { &3 BYaediagdd dzl I aASsA 01 Q4

Rem.4.29 BothYf SSy SQa I yR . 2@k defiiBiusing thesy SdliIA &S% s A Ol
therefore we can represent inferences foretffirst two systemsvithin| axiomatic
systemsNote that Fronhoferis working towards fuzzy logic, in whitte bulk of formal
work is based upon dz] | & A S ¢ A~@iued enerayizatibnfdlisBElued system

Proof of Soundness and Completeness of the Axiomatic Systerh for

Defn. 4.30 Thel Aaxiomatic systenof Wajsberg, 1931

L L 5

| 1 VO LOVU

| 2 060 YO 00'Y

Oon

0

Oon

Qg Z

o) 0

C-
CR

| 3 x00o6x

@]

1

z

60

I b6x 0 6

CA

M.P.From0 and0 6 0 infer0 (p. 250)

Rem. 4.31 Usingthe definitions of the connectiveQ wandk all formulae in  can be expressed
using ando that appear inWajsber@ @xiomatic systenabove.

Axiom schematd 1andl 3are identical tocCL1and CL3espectively for classical logic.

The axiom schem@L206 06Y 6 060 6 06°'Y isnotaaxiomof A
and is not derivable withih Asince it is not a tautology in . On the other hand
schematd 2andl are derivable irCLAsince they are classical tautologies and the
classical logic system is complete. Therefatethe axioms df 1tol  are classical
tautologies.

Any derivation irCLA1 K G R 2 S Li2milfibe A ge@atibndiS A and any axiom
that is derivable irCLAwithout usingCL2will bea derivation il A.

Rem. 4.32 Consider nexCLDO & 6 0. Is there a different derivation? Q&0 6x 0 6 0 6 0
looks like a possible candidate. Recall th&0 may be defined asd 6 0 6 0 inl
Thereforethe axiom schema df may be rewritten as0 6 x 0 OU, or as
x D60 60).

According tad=ronhofer this is closely related to theav of the Excluded Middle
However,the Law of the Excluded Middlis not a tautology i but 0 6x 0 Ol is a
tautology inl

f If0is4then 0 6x 0 OO0 is4 becausd) is the right disjunct, and if
§ if0is$ or& then the left conjunctig, hence 0 6x 0 OO0 is4.
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Rem.4331 Q&0060 60 0 0isa classical tautology, but not a tautology in If0 is
replaced by 0 belowthe contingencyunder the major connectivis eliminated.

‘A rNO

QoQoQo-b.m”m.-b-b-bO"
wn
wn

mgogo.w.w..m.b-b-b
o

PN NG N N S N e

@‘m.hw.m-hm.m-bH

Derived Axioms and Rules |

| D2xx 06 0

H.S (Hypothetical SyllogismFrom0 6 0 and0 6 Y, infer0 6 Y.

| D30 6xx 0
| D40 6 O (new proof required fot )
| D5 060 60 60
| DBUO 060 60

| DT OO 0O6'Y 6 06 06

(@]]
_<

Con.(Contrapositio Fromx 0 6 x 0 infer0 6 0.
LSimp.(Left Conjunct SimplificationfFromd w0 infer 0.

RSimp. (Right Conjun&implification)From0 w0 infer 0.

Y £ R v £ 5

Sub. (SubstitutionFrom 0 6 0,0 6 0 and a formuldY that containsd as a subformula, infer any
formula’yY’ that is the result of replacing one or more occurrences af 'Y with 0.

M.T. (Modus Tollensffrom0 6 0 and® 0 derivex 0.

D.N. (Double NegationFrom any formuldY that containsd as a constituent, infer any formulg
that isthe resultof replacingone or more occurrences ofin Y withx x 0 andvice versa (p. 254)
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Derived Axioms and Rule$ |

Tran. (TranspositionFor any formuldY that containsd 6 0 6 Y as asubformula, infer any
formula’Y" that is the result ofeplacing one or more occurrencesi® 0 6 "Yin'Ywith 0 6
00 "Y.

GCon. GeneralisedContraposition)For any formuldy that containsd 6 O as a suformula, infer
any formuldY* that isthe result of replacing one or more occurrence®dd 0 in"Ywithx 0 6 * 0
andvice versa

Z

| D8 D60 60

YE 6 0 60 8 andd 60,

(@]
C
(@]

GHS (Generalised Hypothetical Syllogigndm 0
infer 0 6 0 6EH60D 0

60 8

GMP(Generalised Modus Ponensfom 0 6 0 6 E6 0 60 8 andone ofthe
antecedent®) , 1 "Q ¢ ¢ 1, infer the conditional that results from deletiny, the conditional
hook followingd , and associated parentheses.

MCD (Modified Constructive Dilemmdgromd 6 0 and 0 6* 0 6 0, infer0.
DE (Disjunction Eliminatiorffromd O0,0 6 "Yand0 6 'Y, infer'Y.
DC (Disjunctive Consequendelomd 6 'Yand0 0 'Y, infer 0 O0 6 Y.

| D9 000 & 0O

¥ Z

Ca

| DIO 06 O

Q0o
| D11 06 06 060 6 06 0060
C.l. (Conjunction IntroductionfFrromd and0, inferd R0 . (p. 254)

Fronhofef &oofisXollow:

z z

| Dx06 060

o)
1. x06 x06x0 | 1,x 0/0,x 0/0
2. x0o6x0 6 060 | 3,0/0,0/0
3. x06 x16*x0 6 | 2x 0/0,
xO6x0 6 060 0 x 0 6x 0/0,006 0/'Y
x06 0060
4 x06x0 6 060 o 3,1M.P.
x06 060
5. x006 060 42M.P. (p. 56)
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H.S. (Hypothetical Syllogisnkyom0 6 0 and0 6 Y, infer0 6 Y.

1. 0060 CPA

2. 006 CPA

3. 06006 0OYO 0DOY | 2

4. 0O6YO 0O'Y 3,1M.P.

5. 00°'Y 4,2 M.P. (p. 256)
| D2x 060

1. xx06 x006x 06%0 | DLx 0/0x 06 0 /0

C
on
w
C
~
Ca
C
(@]
x
C
g
C

3. xx006 006x0 060 1,2 H.S
4., 006x0 60 60 | 4,0/0
5. xx 060 3,4H.S
| D306xx 0
1. xxx 0 6x 0 | D2 0/0
2. xxx006x0 6 06xx0 | 3xx 0/0,0/0
3. 06xx0 2,1 M.P. (p. 256)

1. 006xx 0 | D30/0

2. xx0460 | D2,0/0

3. 060 1,2 H.S. (p. 258)
| D5 060 60 60

1. 0606 006x0 6 060 | 1,06 0/0,0 6* 0/0
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2. 060 | D4,0/0

3. 006x0 6 0060 1,2 M.P

4 Gﬂéxﬁ 0 000 6 | 2,0 6% 0/0,06 0/0,0/'Y
0060 60 6 060 60

5. 060 60 6 06x0 60 4,3 M.P.

6. 06x0 00 60 | 4,0/0

7 060 60 00 5,6 H.S. (p. 258)

Note: The following formula isquivalent tod 6 0 OO0 when rewritten withl  disjunction.

D606 060 60
1. 06 060 60 | 1,0/0,0 6 0/0
2 060 60 6 | 2,06 0/0,0/0,0/'Y
060 6 060 60
3. 06 060 6 VOGO 60 1,2 H.S.
4 060 6 060 60 o | 2,06 0/0,
VOL OUVL OL O VLOUL OV VOUL O UL/u,0/Y
5 060 060 60 60 6 3,4 H.S.
060 60
6 060 60 60 | D5,0/0,010
7 060 60 60 o | 1, 060 60 6 0/0
06006 060061061 06 0/1
8. 0606 060 B0 60 6,7 M.P
0. 060 6 060 60 60 6 | 1,06 0/0,
VOL OUL OL O LOUL OUL O VOV OUL O L/,
060 6 060 60 060 60/Y
10. 060 60 60 6 060 60 6 8,9 M.P.
VOL O VOUL OV
11. 06 060 6 060 60 5,10 H.S.
12. 060 6 060D 60 6 060 60 | D50/0, 060 6 0/0
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13. 06

Rem. 4.34 0 6

0

| D7 06 0

1. 06

0

2. 06

3. 06

0

16

4, 0

06

5 00
Rem. 4.3

86

060 60 11,12 H.S (p. 258- 260)

0 OO (which is equivalenttd 6 0 OO in classical logic) is thestance o 6
60 60 ofl 1when rewritten with disjunction. (p. 260)
Y 6 06 06Y
06Y 0 | 2,0/0,0 6 'Y/0,Y'Y
O0YOYO OO'Y
0O'Y DY | D6,0/0,Y'Y

0DO'YO'Y O | 2,0/0, 66 6'Y0
OYOYO 0OOY O 06 Y'Y
0062
OYOYOD ODOY 6 3,2 M.P.
06°Y
06'Y 6 06 06°'Y 1,4 H.S. (p, 260)

An implication formula) 6 0 allows us teconstruct an instangéO6 "Oand thence
deduce Ofrom "Oby means of M.P. For some formulaé 0, this usage is so common

that it is convenient to introduce a respective derived rule.

Con. (Contrapositionfromx 0 6 x 0 infer0 6 0.

1.

XU

x
C

(&)

Oon

Oon

x 0

Oon

(]

x
C

on
[af]
Oon
Ca

LSimp. (Left Conjunct Simplificatioffomd w0 infer 0.

1.

X

X 0

Oon

Ca

Oon

x

<5 6%
560 6% 0
5 6% 0 6
640 60
x56x 0 6% 0
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(p. 262)
CPA
| 3,0/0, 0/0
2,1 M.P (p. 262)

CPA rewritten from 0 EO
| D6x 0/0,x 0/0

| D3 x06x 1 6* 1/0

2,3 H.S.
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5. x x06x0 6x0 60 4 Con.

6. 0 1,5 M.P

1. x x0ox0 6x0 CPA rewritten from0 EO
2. x00 x06x0 6x0 | 1x 0/0x 0 6% 0/0
3. x006x0 6x0 6 | D3,x06x 0 6% 0/0
xx x0ox0 6x0
4, x D0 6xx x06x0 6% 0 2,3 H.S.
5. x x06x0 6x0 60 4 Con.
6. 0 1,5 M.P. (p. 262)

Rem. 4.36 Valid inferencesusingf SSy SQa FyR . 20K@I NR& OAYGSNYyIf |
corresponding derivations in A provided that we use thke definitions for rewriting
formulae containing such connectives.

E.g4.37 006 0Uis atautologytherefore we would expest 0 6* 0 6% 0 6* 0 , which
expresse® 0 0inl asatheoremofl A. However this is an instancelofD4 with

x 06x 0 /0. (p. 264)
E.g438 © )

06 0

Co of. 20K Gl ND& S'E is@ldayrdlidinh A SeehelSwy

1. 0 CPA

2.x D6x0 6x 06*x 0 CPA rewritten from0 6 0

3. 06x0 6 06D 2 Con.

4. 06x0 6 06x0 O | D7,0 6x 0/0,0/0,x 0/'Y

06 06x0 6x0
5. 06 06x0 6x0 4,3M.P.
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7.xx 06x0 6 06%0 | D2,0 6 0/0

8. xx D6x0 6x0 7,6 H.S.

9. 06 06x D0 8 Con.

10x 106x1 9,1M.P.

1106 06x 0 | 1x 0/0,0/0

12. 0 6x0 6xx DO6X D | D3,0 6% 0/0

13.x 0 6xx 06X 0 11,12 H.S.

14x 06x0 60 13 Con.

15.0 14,10 M.P. (p. 264)
E.g.4.39 L:)

06 0

¢co is valid irg 1.

06 U isequivalentts 0 OO inl , which is equivalenttx 0 6 0 6 0. See he
following derivationwhichestablishes the validity dhe argumentabove

1. 0 CPA

2. X060 00 CPA

3.06x0060 | 1,0/0,x 0/0

4. x 0060 3,1 M.P.

5. 06%xx D | D3,0/0

6. x 0 0xx D 4,5H.S.

7.x000 6 Con.

8. 0 2,7 M.P
Thisderivation justifies Disjunctive Syllogism in (p. 266)
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E.g. 4.40
—’ 6 6 "
0 is valid inA¢.

o i=x =

The second premise above is equivalentt@ Q0 E 0 & 0 E0O G O inl . The
derivation of the argument is as follows:

1. 0 CPA
2. x0O00 B 00 EO&KO CPA
3. x 0 OO 2 LSimp.
4, X

By substituting x 0 6 0 6 0 forx 0 OD, the rest of the proof is identical to that of
the & " proof ine.g.4.39above. (p. 266)

~ s o o s o

formula’Y’ that is the result of replacing one or more occurrences @f 'Y with 0.
C N2 y K Pracbaegy:

' Structural Inductionlf we can derive reciprocal formul@ed 0 and0 6 0, then given any
formula’Y that containsd we can derive bothY 6 'Y and'Y 0 'Y, where'Y is identical to
'Y except for one occurrence &f being replaced by . It follows thenthat if we can derivey,
we can also deriv&f by Modus Ponens andce versa

f Induction on number of replacementg#/e can then replace more than one occurrence of
in"Ywith 0 to obtain anyY’ by replacing one occurrence at a time. (p. 268)

E.g.4.41 Here Fronhdfershows how to deriveboth'Y6 'Y and’Y © "Yby derivingarger and
larger conditionals reflecting the way thathas been constructed from and hence the
way that'Y is constructed fronv .

LetY be the formula

w £ 4 w £ ” 4

x 060 6 0606 60

wherethere is an occurrence @ which we want to replacey 0. ThenY must be
constructed fromd stepwise by combining with other formulae (left list below) and
'Y must beconstructed fromD stepwise as follows (right list below):
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0 0

6060 660

x 860 x 860

x 860 6 60066 x 560 6 666

x 560 6 6066 66 x 960 6 666 0606

NextFronhdfershows how to derive the reciprocal conditionals thaair off the
formulae from each row of the two lists aboize.

06 0 and

LOU

660 6 660 and

O0UL O 600U

x 800 0x 660 and

x 060 6x 660

x 860 6 666 6 x 660 6 66 and

x 660 6 666 6x 660 6 066

x 500 06 606 06 6 x 660 6 666 0606 and
x 000 0 006 00 0 X OOUL O 06006 060
wherethe last pair of conditionals are

Y6 'Y and

Y oY

as perFronhofeQ éxample. (p. 270)

Proof:

90

1 The derivability od 6 0 and0 0 U is given in the statement dhe rule Sub. (Substitution)

1 For each pair of conditionaly’ 6 "Yand"Y 6 “Yin the list of paired conditionalghe

following pair'Y 6 “Yand"Y 6 “Y have"Y as aninmediate component ofY, and”Y results

from replacing one occurrenag 3 in4 with 3 .

1 Given thiggeneral pattern for constructing the target formulae, we need only show, that

given any formulagy 6 "Y and"Y 6 Y, there is a way to derivéy 6 “Yand"Y Y,

where"Y is an inmediate component ofY, and”Y is the result of replacing one occurrence

of Y in "Y with °Y.

1 There are three possible cases reflecting the structurérgénd hence alsoy).
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Case 17Yis"Y 6 "Yfor some formuldY, and "Yis"Y & 7Y, Given'Y 6 Y we can derive
YO Y iek "YOTY D YO Y as follows:

3 YO Y given
g+1 YO'Y 6 YOYO YOTY | 2,°Y/0,"Y/0,™Y'Y
E+2 YOYO YOTY £,£+1M.P.

Y6 "Y,whichis"Y0 Y 6 "Y 6 Y, is similarly derived frorfy 6 Y.

(p. 270)
Case 27Yis"Y0 Y for someformula™, and "Yis"Yd Y.

€ YO Y given
E+1 YOY O YO'Y 6 TYO'Y | 2,"Y0,"Y/0,"YI'Y
E+2  YOY 6 'YO'Y O YOY 6 | D7,7Yd "Y/0,

"YOUY & Y6Y 6 Y6 Y Y6 "YI1,7Y6 Y'Y
€+3 YOY O YOY O YO'Y g€ +1,8+2M.P.
E€+4  YOY & YOY ek YO'Y g, & +3M.P.

4 64 ,whichis563 6 50 3 ,is similarly derived fro8 6 3 .

(p. 272)
Case3: "Yisx “Yand“Yisx Y.

¢ YO Y given

E+1 xxYHY | D2,"Y/0

E+2 xxYHY £,& +1HS

€+3 Yoxx Y | D3,"Y/0

E+4 XxxYHxx Y €+2¢+3HS

£E+5 xYOx"Y iek "YO'Y ¢ +4 Con.

"Y 6 Y, which ig "Y 6 x Y, is similarly derived frorY 0 Y. (p. 272)
E.g.4.42 Wecan use Sub. to derivecx 0 6x 0 6xx O 06 0 as follows:

1. 006x0 60 60 | 4,0/0

2. 06xx0 | D3,0/0

3. xx060 | D2,0/0
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x0) 6xx0 60 1,2,3 Sub.

Oon

4. xx )

On line4, two occurrences ob on line1 were replacedvithx x 0. (p. 272)

M.T. (Modus Tollensfrom0 6 0 and® 0 derivex 0.

a X 0 given

3 060 given

E+1 xx0060 | D2,6/0

E+2 xx0060 g, £ +1H.S.

E+3 00xx0D | D30/0

E+4 xx)Do6xxD ¢ +2¢+3H.S.

£+5 x06x0 ¢ + 4, Con.

£+6 x0 ¢ +5,6 M.P. (p. 274)

D.N. (Double Negationffrom any formuldY that contains) as a constituent, infer any formulg
that is the result of replacing one or more occurrences af 'Y withx x 0 andvice versa

Tran. (TranspositionfFor any formuldY that containsd 6 0 6 "Y as a sudformula, infer any
formula’Y’ that is the result of replacing one or more occurrence8 @ 0 6 "Yin'Ywith 0

Y Zz

vo°"Y.

GCon. (Generalised ContrapositioRpr any formuldy that containsd 6 0 as a suformula, infer
any formuldY* that is the result of replacing one or more occurrencesd @ 0 in 2 withx 0 6 x 0
andvice versa

Proofs:

i D.N.follows fromSub.andl D2as well a3 D3.
M Tran.follows from Sub. antl D7.

1 GConfollows from Suh.l 3 and the fact thaevery formula of the form

060 6 x06%0

is a theorem of A, thus:

C
Oon
x
C

w
x
Ca
\
C
“x
C
—
C

xx ) § x ¢

Oon

1. xx D

N
Ca
Oon
C-
Oon
x
C-
(@]]
x
Ca

1 D.N. (twice) (p. 274)
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1. 06 060 | D1,0/0,0/0
2.x06xx D60 1 D.N.
3.x 060 00 2 Con. (p. 276)

GHS (Generalised Hypothetical Syllogigspm 0 6 0 6 E 6 0 60 8 andd 0 0,
infer 0 6 0 6EGD 060 8
Base case& = 3
We derived 6 0 60 from0d 6 0 60 and0d 60
1. 06 0 60 given
2.000 given
3. 06O 6 060 6 060U | 2,0/0,0/0,0/Y
4, DOV 6 060 6 0DOOD 3 Tran.
5. 060 6 000 2,4 M.P.
6. 06 0D OO 1,5H.S. (p. 276)
Hypothesis
Fom0 6 0 OEG 0O 60 8 andd 060
infer 0 6 0 OES O 00 8
Induction step
Step¢ -1 to€: for arbitraryé > 3, the derivation begins as
1. 06 06 ODO6EOG6 O 60 8 given
2.060 given
3. 0 60 6 06060 060 | 2,0 /0,0/0,00Y
4, 0606 0O 060 60 060 3 Tran.
5. 0 60 60 060 42M.P. (p. 278)

Theformulae on lines 1 and &re, respectively, instances of the premises:
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06 06 0VOBES6 O 60 8 andd 6 O of our induction hypothesis with
f 0 00 inplaceod and
f 0 6 0inplaceofd and

0 inplaceo® forl Q &-2

=
C

Fronhofercompletes the derivation with thenstantiated conclusion of theaduction hypothesis

6. 06 0O ODOBEOG O o0 8 15IH0 60/0
O 60/0,
0/0 forl "Q £-2

GMP (Generalised Modus Ponerf@om 0 6 0 6 E6 0 & 0 8 andone ofthe
antecedent®) , 1 "Q & ¢ 1, infer the conditional that results from deletirig, the conditional
hook following0, and associated parentheses.

Justification

f By repeated application dfran.the antecedent® 8 8  can bepermuted in any order.

1 Specificallyp can be moved to the beginning of the formuli@aving the order of the other
antecedents unchanged.

1 Then a single application of M.P. will produce the desired formula@vittimoved. (p. 278)

Constructive Dilemma
In classical logic thiellowingargumentis valid:

0
DOV

ca
C on

X

¢
(eyanrows below) and the corresponding rule is derivable in. Elodvever the inference is not valid
inl ifboth0 and0 have the valug (iagentarows):

C
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0O 6 1 |x 0 6 1

T 4 T |F T 4 T | 4
T § s |F T 4 s |s
T & F|F T 4 F|&
s 4 T|s s 4 T | 4
2 E 88 8 4 5|9
s s F|s s s F | &
F 4 T |4 F 4 T | 4
F 4 s |4 F s s |s
F 4 F|4 F & F|&

Modified Constructive Dilemma

The argument belowhoweveris valid in

and the corresponding rule is derivabld inA, gf€ehrows belaw.

T T O 4 —|JO
— ==Y 4= Y=o
M=M= o=
T MO O =
— A= — = o
— O e ¢
T O O
M= Y= — <= o

M= =T =
'I'I'U"-'I'I'U"-'I'I'w'ql—‘

MCD (Modified Constructive Dilemm#&romd 6 0 and 0 6* 0 0 U, infer0.

1. 060 given

2. 06x0 60 given

3. 0060 6 006x0 6 06%0 | 2,0/0,0/0,x 0I'Y
4. 06x0 6 06*x0D 3,1 M.P.

5. 006x0 00 4,2 H.S.

6. 06x0 6 x06*x0 6 0DO*D | 2,0/0,x 0/0,x 0/'Y
7. x00x0 6 006x0 6 06xD 6 Tran.
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8. x06x0 1 GCON
9. 06x0 6 006x0 7,8 M.P.
10. 6 6x0 60 9,5H.S.
11. 06x0 60 60 | 4,0/0
12.0 11,10 M.P.
Rem 4.43 MCD can also be expressed as: flod 0 andx 0 6 0, infer0. (p. 282)

DE (Disjunction Eliminatiorffrom0 OG0, 0 6 "Yand0 6 Y, infer'Y.

1. 060 60 given rewritten from0 QD)

2. 00 given

3. 06 given

4. x 060 60 | D8,0/0,0/0

5. x 060 0'Y 4,2 H.S.

6. xx 000 6xx0 6 x06x 060 | 3x 060 /0% 0/0

7. 0060 60 6x006x DO 6 DN. (twice)

8. 0060 60 6x000 7,4 GHS

9. xD60 6 060 6 x06%x0 | 2x 0/0,0/0,x 0/'Y

10.x06x0 6 0060 | 3,0/0,0/0

11.x 060 6 06x0 6 06O 9,10 GHS

12. 060 & | D6,06 0/0
060 6x 060 06x 060 x 060 /0

13.x§66 6 06x0 6 11,12 GHS
060 6x 060 6x 060D

14.x060 6 06x0 0O 13,5 GHS
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18.

19.

20.

21.

22.

Ca Ca

C

C

Ca

C2

C C2

Oon

C2

Oon

Oon

Oon

ca On
Oon

x

Oon

Ca

CA
(@]
x
C-
(@]
<

c o
C
o
c-
o
<

C

< e

(@]

Cn
(@]
<

14,8 H.S.

15 Tran.

16 Tran.

17. Tran.

P R . P

| D60 O v/U,0/V

23,25 MCD

26,1 M.P.

DC (Disjunctive Consequendelomd 6 'Yand0 0 Y, infer 0 O0 06 Y.

According taFronhoferthis is implicit in lines 226 of the previous derivation.

DI 000 6
1. 0
2. 0
3.

0 O0

6

(@]

Ca

C

C

can be rewritenas 06 0 6 0 &

6

0

C

6

Oon

v
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060 60
| 1,0/0,0 6 0/0

| D6,0/0,0/0

1,2DC
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(p. 282284)

(p. 284)



| DIO0DSG O O0UO6 D canberewritenas 0O 0 6 D60 6 0DOO
1. 060 6 060 o | 2,06 0/0
060 606 060 60 06 0/0,0/'Y
2. 060 60 6 060 60 | D9 0/0,0/0
3. 0060606 VOO 60 | D9,0/0,0/0
4. 060 6 VOO 6 1,2,3 Sub.
060 60 6 060 60
5 060 6 060 o | 2,060 6 D60
060 60 6 060 60 O 060 60 6
060 60 6 060 60 o 060 601/0,
06 D60 6 060 o 06 060 o
060 6 060 6 0601/Y
06 D60 6 060D
6. 060 60 6 060 60 o 5,4 M.P.
06 060 6 060 o
060 6 060 o
06 D60 6 060D
7. x06x 060 6 x06*x 060 O | ,x06x 0060
xO6x 060 6 x06x 060 x06x D60 /0
8. x0Do6x 060 6 x06x VOO O 7Tran.
x06 x06x 060 6x 060
9. x0o6x 060 o6x 060 O | D9x 0/0,x 060 /0
x 060 6x0 6x0
10. x06x 060 6 x0d6x 060 & 89GHS
x06 *x 060 6x0 6x0
11. *06x 060 6 x06* 060 o6 10 Tran.
x 060 6x0 6 x0b6x0
12. 060 60 6 060 60 & 11 GCON (four times)
06 D60 6 060D
13. 060 6 B0 o 12,4 H.S.
06 D60 6 06D
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14. 06 0060 6
060 6 060 6 06D

15,006 0060

16. 060 6 060 6 006D

| DI1: 06 06 060 & 06 060

1. D06 0060

2. 00x0 6
x0D06 D60 6 06 060

3. 006x0 6 06 060

4. 06x0 6 06 060 O
06 060 60 06 006x0D

5, 06 060 6006 006x0

6. 06x0 60 60

7. 06 060 60 60

8 06 060 60 60 0
06 06 D60 6 06 06

9. 06 06 D60 o 06 00

C-

C

C.l. (Conjunction IntroductionfFrromd and0, inferd EO.

w
x
x

C

I
<
<

c2

Oon

Oon
x

<
C2

(et}

Oon
>
C

Oon

(@]

CR

C2

Oon
x
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Oon

C

o

x 0

99

13 Tran.

| 1,0/0,0/0

14,15 M.P. (p. 286)

| D1,0/0,0/0

5,6 H.S.

| D9,06 06 O /0,0/0

8,7 M.P. (p. 288)

CPA
CPA

D.N.

| D1x 0/0,% 0/0
3,4 M.P.

| D6X O 6x 0/0,x O/0
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7. x006x0 6x0 6x0 5,6 M.P.

8. xxDo6x x06x0 6x0 7 GCON

9. xx D 2 D.N.

10x x06x0 60 8,9 M.P. rewritten from 0 B0

(p. 288)

Rem4.44 Note 06 060 6 0060 doesnotholdin ,see magenta row below.dwever
it does correspond tdleft) contraction in subsequent systems

MY 4 44!

— 4 —4BE— -4 Y —|on
Y 4 A e
A= 48l- 4 4o
nmY Y 4 1 CcR
—— 48— 44440
TR A4 e
4444 4 4o

TR A A el

Rem 4.45 Note also,x 0 0 0 6 0 does not hold it , see magenta row below. However it does
correspond to (right) contraction in subsequent systems.

0
=
s
F

— o

0
-
s
F

1 = — | O

0
=
s
F

—f | >

Rem 4.46 The deduction theorem
ifn° "OU"Qthenn U"0d "O

does not hold il A.

~ ~ 7z oz

E.g.4.47 Whenevelh E 06 0 E ¢
O E0OO6 06Y dY

06 06'Y istrueinl then soisY, howeverD E 0 0
isnotal tautology.

Proof:"Ymay be derivedfrord 2 06 0 F06 006'Y asfollows

1. OF 0060 E0O 0O'Y CPA
2. 0 1LSimp
3. 060 FE0O 00Y 1 RSimp
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3 LSimp.
3 RSimp.
5,2 M.P.
4,6 H.S.
7,2 M.P.

.Yr.s.FT.

oE-+-+~+HFB-+~+-+-+-B-

= . L.
> »

o L +-+FBFFEFEF

D - g,

o L -+~~~

N T TR .,

T T

oL -,

e e S S T S

N P T,

o B =

W B - g

[ J)

B . LL g,

N [TRITRRTRY T FTe

Y [TSNTRN TR

Py TR TR TR

- - - e g,

oL,

~,ujT B

oM L

Fl-+-B- -+~

N ST

Fll- -, L

oL L - -

- -

Y [TTRyIR

oo+

oL L - -

oo+
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Colour Key:Yis true when

p. 292
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{Gdzi G SNBNRAa 5SRd2OiGA2Y ¢KS2NBY
Lemma 4.4&ccording td-ronhéfer the followingmodified deduction theorem obtains:
For a set of formulae of | , and formulagAand’Aalso ofl
A UAKk NUAS AL A
Proof. We apply M.P. twice.

Suppose that the sequence of formald ,’A >~ “AXconstitutes a derivation GAfrom
AL

We establish by mathematical induction @hat* U A6 ‘Ad A obtains for eactiQ
from 1 ton, and hence that U’A6 "Ad "A obtains.

1 Inthe case thaf\ is’A then' U'AS 'Ad A by Lemma 4.9(¢ckince
A0 A0 A is’Ad A0 A isl 1 with’A"Eand’A'E
1 Inthe case thatA is an axiom or a member of then

(@) ° U'A by Lemma 4.9(c) or by Lemma 4.9(e) as the case may be, but

(b) " UAG 'Ad A byLemma4.9(c),sinék 6 "Ad ‘A isl 1with AI"E
and’A“E Hence,

() * U'AG "A by Lemma 4.9(f) (M.P. (a),(b)). But,

(d U A0A 6 A6 A0 A byLemma 4.9(c), sincAd A 0
A0 A0 A isl 1with A6 "A/"Eand’A"E Hence,

() UAG A6 A by Lemma 4.9(f) (M.P. (c),(d)).
1 Inthe case thafA is obtained by M.P. froifh 6 "A andA , then

“UAS A6A and’ UAS AS AHA LH.

¢ Ad Ad A

&

a AO A0 A DA

a+1 =6 A d Ad A & Tran.
aG+2 A6 =0 =06 A & +1 Tran.
a+3 Ad 'Ad Ad A6 A a+2,& GHS

© philosophy.org.za
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s

D11, A"E'A0 AlI'E

a+4

a+4,60 +3 M.P.

Ne)

Ne)

Ne)

e

G +6

D11 'A"E'Al'E

a +6,4 +5 M.P.

p. 296

z

Hencen U'A6G 'Ad A by Lemma 4.9.

A. Therefore it

inl

Frome.g.4.47,Yis derivable from) E

E.g.4.49

follows fromthe Modified Deduction Theorem thaty E

'Y is a theorem. Verify by truth table below.

(p. 298)

© philosophy.org.za
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| D4, 06 0 /0
1 D.N. (twice)

2 GCON

3 Tran.

4 D.N.

5 GCON

6 D.N.

7 GCON

The lasline is equivalenttod & 0 6 0 6 0 interms ofo andx .
Recalthat O 06 0 & 0 is not a tautology i , cf. Rem 2.28. (p. 298)

| D6 0OS60O & 'YO'YO 0&Y D 0&"Y

Rothenberg(2005, A.2)does provide a derivation of ¢habove derived rule of inference; however

his justification of the first two linesf his derivatiorrefer to an earlier derivatioof his which in

turn relies on an earlier definition in his thesieither ofg KA OK F2 N LJ NJi
I.

presentatio® Ly adSIFRXZ ¢S NBfte 2y

G 6 NXHz{ibg whicBwvd Eas ¢

prove this a tautologyWe havehad tosplitthe truth table belowinto three the first for0 always

4, the second fob alwayss , and the third for) always&

© philosophy.org.za
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Ne)

Ne)

T T T T T T T T T.S..S..S..S..S..S..S..S..S._I_l F F F F F F F F

FFkFFFFFRFRFRFRFRFRFRFRFRFRFRFRFRRRRRRRE
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Ne)

Ne)

T T T T T T T T T.S..S..S..S..S..S..S..S..S._I_l F F F F F F F F

FEFEFERFRFRFRRRFRRFRFRFRFRFRFFF .00 -0 0 0 00

© philosophy.org.za
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Ne)

Ne)

T T T T T T T T T.S..S..S..S..S..S..S..S..S._I_l F F F F F F F F

FFFFFFFFFRFRFRFRFRFRFRFRFRFRFRRRRRRRE

[y ¥ Wy Iy Iy N Iy Iy Iy Iy I ey Ny Iy Iy Iy Iy Y Iy ey Yy iy Yy iy Wy oy Wiy By N Wy U

Derivation Systems for-¥aluedPropositional Logic

[ 2340

Qa

So A0l

aaA

dzl I

Completeness of & I £ dzS R

Rem. 4.50 Recall that in defn. 2.1Bronhéferabbreviated the formula /| 6 ; asf, we also

{ e

SNY I ¢

A

0. Recalhlsothe truth table for 6 6 * 6 is

z

YOUK W WDHQ 9

NB LINB & &

decided in Rem 1.76 touse (i 2

z

where 0 0x 0 is abbreviated as

Ne)

WL g

TR

(p. 302)

© philosophy.org.za
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Additional Derived Formulae

©

| D30U 66%x & 6x B

n Z n

| D31 x x 00O

z

| DR 666 6 x60% 6

| D34 66 x 66 068

| DB U* 86 x x86 666 (p. 302)
FronhtfeQa RSNA DI GAz2ya F2fft20Y
| D30U 86% & 6% b
1 666 66 66 6 0606 6606 O | 2,60%x0 6 06/0,
00x0 006 6 66x0 0/0,06 6x dI'Y
2. 006x06 60 060 | 4,6/0
3. 60 6606 6 O00x0 006 060 606x0 1,2 M.P
4. x50 006x 0 | 1x 6/0,0/0
5. x00xx 06%x 0 4D.N
6. x 00x0 00 5 CON
7 006x0d 60 66x06 0 | 2,6 6% 6/0,
x 06x0 006 6 606x0O 00 x 56x 06 /0,00
8. 06x56 6% 6xd 6 H6%x0 60 6,7 GMP
9. 66x0 606 0 060 66x06 6 60x0 3 TRAN
10. 66x 6 6 6O*x6 0 8,9 GHS
66 66x6 6 6%
11. 66 66x06 06 10 TRAN
66x 0 0x 66x6 6 606%x0

© philosophy.org.za
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| 4,6 6% 0/0

11,12 GHS  (p. 304)

| D8,6/0,x 8/0

2. 06*x0 6x 06x06 0 | 2,06* 0/0
x 006x0 606 0O x 06x0/0,00Y
06x06 006
3. x 66x0 606 0O 2 TRAN
56x0 6% 56xb 6
56x8 66
4. O006x06 0x d6Oox0d O 3,1 M.P.
06x06 006
5 00x0 006 006 | 4,6/0
6. 006x0 0x 6Oxd 00 45H.S.
Note:| D31does not hold in reverse. See truth table below
6 o6 «x 0
T T F T
S F T S
F F T F
(p. 304)
| D32 6006 6 x606* O
1. xx00xxd O x50x 0O | 3% 0/0,x 6/0
2. 006xxH 6 xHO*H 1D.N.
3. 066 6 x8606%0 2 D.N. (p. 306)

© philosophy.org.za
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| D3466 x 66 666

| D35 Ux 860 *x xB606 606
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| 1,6/0,06/0

1D.N.

2 D.N.

3 CON

| D6

(p. 306)

| 3,6/0,60 6/0

| 3D32,60 6 6/0,6/6

1,2,3 &b.

(p. 306)

Fronhdferrefersthe reader toWajsberg(1931, p.269) for a derivation; however weannot make
sense of thainfamiliar notation2 S KI @S G KSNB T2 NB
proof by means of a trutkable. If we accept tht the statement igautology and that sucha

demonstrationis as good as a derivatiove may insert the symbdl¥Cas an indication of proof.

F3+r Ay NBaA2NISR

444 —4—4—=4TTm
N X T P
M—A—4mn——n--

Y S SR S
M4 40 4o
i B B B e I IR TS0

0

MMM 4440

444”4 s 40w

Note: An update to this study unit will be published in the coming weeks
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