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Critical Reasoning 13 - 

Probability Distributions 

with guest editor Sintu Tonjeni 

In Critical Reasoning 10 we took a preliminary look 

at some of the basic properties of probabilities, 

including some mathematical techniques for cal-

culating them, either singly or in combination with 

another probability. In the world of research, 

whether in the physical or social sciences however, 

we are not so much interested in the probabilities 

of individual outcomes as the distribution of possi-

ble outcomes of a random experiment, survey or 

statistical inference procedure. A probability dis-

tribution then assigns a probability to each meas-

urable subset of such a procedure. (Wikipedia: 

Probability distribution) If possible we want to 

gauge and to assign a number to an event, so ex-

amined, to gauge the likelihood of its happening. 

Why Do Probability Distributions Matter? 

One reason is because when we naturally look at events we find patterns in what we see. Almost 

habitually, we make decisions based on how we perceive such events as they happen or as they 

happen over again. This is the basis of intuition. However, intuition does not always serve us well. As 

we saw in Critical Reasoning 04, concerning fallacies and Critical Reasoning 06, concerning heuristics, 

prejudices, biases and just plain faulty thinking lead to unwarranted and erroneous conclusions, 

none more so than those associated with probabilities. Studying probability distributions therefore 

allows us to be more mindful of the way we use our fallible intuition, by encouraging us to come up 

with logically consistent, intuitive hypotheses and by challenging our biases with empirical evidence. 

This is not simply an abstract or academic exercise. In fact, it goes to the heart of how, for example, 

we estimate risk, perceive the trustworthiness of persons and corporations, to how impartial judges 

are expected to weigh the preponderance of evidence before them. 

Why Are Probability Distributions Now Included in the Humanities Program?  

Unfortunately, this is where many highly capable humanities students are either tempted to or 

actually do drop out from their academic program, either because they feel intimidated by the 

dreaded, compulsory “Stats Modules” or because they fail to see the relevance of such material for 

their intended career path. The short answer to this question then is that universities around the 

world are no longer prepared to confer degrees upon students who are mere repositories of 

information but who lack the numerate capacity to actually generate knowledge through scientific 

research or, at the very least to understand the process. We cannot promise to inspire you in this 

and the remaining study units regarding probability, but we have at least endeavoured to be clear. 

Carl Friedrich Gauss (1777 - 1855) Mathematician 

and Philosopher after whom the Normal (or 

Gaussian) Distribution is Named. 
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From Histograms to Curves: 

We have all drawn histograms at school, which 

make it easier to take in, at a glance, the way the 

data we have collected are distributed. Firstly 

we have to decide whether the variable(s) we 

want to represent is (are) either discrete or 

continuous. A discrete variable can only take on 

a finite number of values, such as the number of 

students attending a lecture: 1, 2, 3, 4… We 

cannot have halves or quarters of a student 

present – such events are impossible. 

Categorical, also known as qualitative variables 

are all discrete. If your first name is Amy and you 

have black hair then those are two of the many 

“valves” that the discrete variables, “first name” 

and “hair colour” can take on. Such variables are 

also mutually exclusive – you cannot have these 

different events happening at the same time. If 

again your first name is Amy and you have black 

hair, your first name cannot also be Becky with 

blond hair. Nor, obviously can you be 0.4 Amy 

and 0.6 Becky etc. Continuous variables, on the other hand, such as the distance you walk to work 

or the time you took to do your hair, can take on any value including fractional values within a 

certain range. Maybe you walked 1.1km to class and took 9.7 minutes to do your hair but you could 

not have walked a million km to work or taken negative 3 minutes to do your hair. 

If we have a manageable number of discrete values (say 10) we can construct a histogram directly, 

otherwise we have to divide the range in to a series of intervals and then count how many values fall 

into each interval. If we have chosen a variable such as bodily height of a population of students, we 

will probably end up with a histogram that is clustered about the middle and tails off on either side. 

If we join the tops of our rectangles we will obtain a jagged line approximating a distribution curve 

with a number of interesting properties (of which more later.) 

For now, take a look at the following a bimodal histogram (one with two obvious relative modes, or 

data peaks) created by Mr. Anderson1 as part an activity with his 7th Grade maths class. 

                                                           
1
 See his blog “Human Histogram” at https://banderson02.wordpress.com/2014/05/12/human-histogram/ 

Random Variables & Observations 

In the interests of expediency, in this context 

we have used the term “variable” rather 

loosely to mean either “random variable” or 

“observation”, whereas there is a subtle but 

important distinction. E.g. There may be X 

students attending a lecture which can be 

observed to take on a value of 0,1,2,3 etc. The 

value that X takes on in this event, might be 

denoted x. This little x is a variable. 

Big X, all the while, is also a variable. It’s 

actually the random variable in this context 

because it stands for the unknown, prior event, 

whose probability we are trying to measure 

with the probability distribution. This makes a 

world of difference when expressing 

probabilities in terms of events like Pr({X=x}). 

https://banderson02.wordpress.com/2014/05/12/human-histogram/
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Clearly this was a very tall cohort (or group of people with a shared characteristic) for Grade 7 or 

maybe they were his Grade 12 class. What we can see is two sets of data for height presented on the 

same set of axes; one for females, coded orange, and one for males, coded green. Please note, by 

the way, that all the axes are correctly labelled as well as numbered and that there is a key 

explaining the colour coding. And, this is often omitted even by senior students; there is a title that 

meaningfully describes the graph! Also Mr. Anderson has provided a few descriptive statistics at 

right that, at a glance help in the interpretation of the data. 

If Mr. Anderson had simply joined the tops of each set of rectangles in his histogram, he would have 

ended up with two very chunky “curves,” if one could even call them curves. Instead, he probably 

used a statistics program to smoothen the curves and then superimposed them on the diagram. 

What is going on mathematically from histograms to curves is that to obtain ever smoother curves 

would require one to include more and more little rectangles representing ever more data. In other 

words the number of such cases (n) included would have to become very large. On the other hand, 

to accommodate so many little rectangles in the same space would require that they be drawn ever 

more closely. In other words the width of each of their bases would have to become very small, as 

small as you like proportional to their number, but not zero. You can do this manually, which is very 

laborious, or you can use a program like “Excel” to draw them for you. Either which way you will 

have constructed, what is informally known as a “bell curve” because of its characteristic shape. This 

figure will crop up time and again in the remaining discussion, so it is important to understand its 

geometric origins, although it can also be derived algebraically via a somewhat complicated 

formula.) 
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Probability Distributions: 

It is not just physical data that are distributed, sometimes we may want to visualise the way that 

certain abstract information is distributed, in particular probabilities. And although probabilities are 

abstractions, they can represent very real states of affairs: What is the probability of my passing a 

given statistics module, knowing that historically just such a proportion has succeeded? What is the 

probability of my avoiding lung cancer, given that I gave up smoking a pack a day ten years ago? 

By way of example, consider the much simpler question: What is the probability of throwing a 

particular number using only two dice? We know from common sense that all possible throws have 

to be whole numbers ranging from a minimum of 2 (“snake eyes”) to a maximum of 12 (double six.) 

We also know that that there are more than one way of throwing certain numbers like 4. You could 

throw a 1 and a 3 or a 2 and a 2, or indeed a 3 and a 1 if you are using different coloured dice. So 

clearly, throwing a 4 is more likely than throwing a 2 on any round. More precisely throwing a 4 with 

two different coloured dice is exactly 3 times more likely than throwing a 2 because there are 3 out 

of 36 ways of throwing a 4 and only 1 out of 36 ways of throwing a 2. 

Here, it worth noting a few conventions with regard to probability distributions and probabilities. 

Probability distributions are functions that take events as inputs and make probabilities as outputs. 

Recall, from Critical Reasoning 10, that these probabilities are always numbers between 0 and 1. 

When an event that has no chance of happening we say that it has probability zero while an event 

that is certain to happen has probability 1. Probabilities in between impossibility and certainty are, 

by scientific convention, expressed as decimal fractions like 0.3 instead of the more familiar 30%. 

Recall also that, if you add up all the possible probabilities, you always get the probability of 1. 

Tim Stellmach has constructed the following graphic to help visualise the probability distribution for 

throws on two dice of different colours. The graph, cleverly depicted using the facets of different 

coloured dice, is known as a probability mass function (p.m.f.). The horizontal axis represents the 

event that a number is thrown. It indexes events that the random variable S takes on the value s. It is 

the input of the p.m.f. The vertical axes (as a decimal on the left and a fraction on the right) are the 

probabilities that correspond to each of these events. More precisely, we take the event {S=s} and 

find it’s probability, P({S=s}). The shorthand for this is simply to write p(S). 
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There are a several features of Stellmach’s graphic that stand out: Clearly 7 is the most probable of 

all possible throws, which is why, no doubt, many people consider it a “lucky” number. Of course 

“luck” has nothing to do with it. There are simply more ways of throwing a 7 on two different 

coloured dice than for any other number. Secondly, the figure is neatly symmetrical about the 

middle, tapering off on either side. Thirdly, the probability mass function allows one to calculate the 

probabilities of events represented by intervals, such as the probability of throwing a number 

greater than 9 i.e. P(S > 9) 

Here we are looking to use the probability mass function to find the probability of throwing a 

number greater than nine. The event {S > 9} is the event that I throw the dice to get a number 

greater than 9. If I throw a number greater than 9 then either I threw a ten, eleven or twelve. Using 

our notation, the event {S>9} occurs when either {S=10}, {S=11} or {S=12} occurs. 

This means that the event occurs when I throw a ten, an eleven or a twelve – or in our notation, the 

events {S=10}, {S=11} and {S=12} respectively.   We can thus re-express the event {S>9} to occur if 

and only if the event {S=10} occurs, or {S=11} occurs, or {S=12} occurs. 

We can consult the chart to look up the probability of throwing a ten. The chart says this value is . 

This is P(S=10). Similarly we find P(S=11) to be  and P(S=12) to be . Using the additive rule from 

Critical Reasoning 10, we then add up these probabilities to get: 

P(S>9) = P(S=10) + P(S=11) + P(S=12) =   +   +  =    

For some continuous random variables such as height, mass or age however, we will have to 

consider the probability density function (p.d.f.) of the normal, Gaussian or “bell curve,” such as 

the ones that Mr. Anderson superimposed on his histogram. Although, as mentioned, such curves 

can be constructed geometrically, it is much less time consuming  to simply hand the task over to a 

spreadsheet program like Excel, which calculates the function algebraically. For any given random 

variable ὼ, then the function is given by: 
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Please do not be alarmed, you will not be required to memorise or even understand this formula. 

The reason for reproducing it is to make the point that its value depends on only two variables, the 

mean (‘) and the standard deviation („); the rest are constants. When ‘ = 0 and „ = 1 we get a 

standard normal function, shown below.  

 

The Probability Density Function for a Particular ὼ Depends 

only on the Mean (ɛ) and the Standard Deviation (ů) 

 

If the values of ‘ and „ are tweaked as they have 

been at right then a variety of different normal 

curves result, one resembling a speed bump, 

another more like a traffic cone.  What all these 

curves have in common however is that they are 

continuous (smooth,) symmetrical about the mean 

and approach the ὼ axis asymptotically i.e. they get 

ever closer but don’t ever touch or intersect. 

Populations and Samples 

Before we continue it is important that we draw a clear distinction between populations and 

samples. A population is a complete set of items that share some property in common, be they: girls 

over 14; motorists; chess players or Catholics. That is every single one of them.  Populations, 

understandably, tend to be impracticably large, unless that is, they represent a very precisely 

defined group, such as: “students in Mr. Anderson’s Grade 7 Maths class of 2012.” Suppose now, a 

drugs company wanted to ensure that their cough lozenges for teenagers were safe for use by all 

humans 13 and over (that is the population.) They would have to enrol a sample, test it on them in a 

clinical trial and submit their results for approval. A sample then is subset of the population, drawn 

at random or by some other statistical procedure from the population. If the drug company had 

enrolled all and only those students in Mr. Anderson’s Grade 7 Maths class of 2012 in their clinical 

trial, then they would now represent a sample. So clearly the terms “sample” and “population” are 

relative. 
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By convention, variables describing populations are referred to as parameters and are represented 

by Greek letters. Those describing samples, on the other hand, are referred to as statistics and are 

represented by Roman letters. This is important in Statistics because sometimes a formula for one 

measure looks slightly different depending upon whether it is describing a population or a sample. 

Then of course it is important to know the context in which these terms are used. Is someone using 

them in the vernacular or are they trying to convey something quite precisely? 

Measures of Central Tendency 

Most sets of data, such as height, weight, intelligence etc., if plotted as a histogram, will tend to 

cluster around a central point. That is what people loosely call “the average,” however there are 

several ways, statistically speaking, of being “average” or “the average.” The terms “mean,” 

“median” and “mode” all describe “averages” in one sense or another.  We shall examine each 

briefly in turn. To begin, we must decide whether the distribution of variables is discrete (like dice 

throws) or continuous (like height.)  

For discrete distributions the mean, ‘ is calculated by summing up every possible variable, ὼ 

multiplied by its probability, ὖὼ. Thus: 

‘  ὼὖὼ 

A similar formula applies to continuous probability distributions; however it is very seldom that the 

population mean can be calculated in this way or even precisely known because of the impossibly 

large number of individuals that have to be taken into account - one can’t measure or know 

everybody’s height, everybody’s mass, everybody’s mathematical aptitude etc. One exception to this 

is IQ scores, where the mean is simply defined as 100. For the most part we will be dealing with data 

sets that are samples of populations. 

Instead, we can calculate the arithmetic sample mean (ὼӶ) of data set as the sum of the sampled 

values divided by their number (ὲ). Thus: 

ὼӶ
ὼ  ὼ Ễ ὼ

ὲ
 

This formula for the arithmetic mean is probably familiar to most of us and is the one that we will 

use almost exclusively in the Social Sciences when we refer loosely to “the mean”. Note, that it is 

important to distinguish the sample mean (ὼӶ) from the population mean (‘ or ‘) because when we 

come to calculate other statistics for samples it is the former that we have to use rather the latter. 

There are besides, a couple of other measures of the mean, namely the geometric and harmonic 

means. We will only discuss the geometric mean (for sample sizes of natural numbers, ᴓ) here 

because it crops up in Physical Anthropology when, for example comparing rates of growth. As the 

word “geometric” implies, we have to multiply the rates rather than add them. Thus: 

ὼ ὼ  
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If you are unfamiliar with the big Π operator above, it is analogous to the more familiar big Σ. This 

one is telling us to multiply all the values from 1 to n. So for example, if we take a sample of the 

growth rates of 5 boys from Mr. Anderson’s 7th Grade class over a period of a year we might obtain 

the following data: 

 Growth rates of sample: 3, 4, 3, 5, 4 cm per year 

We can then calculate the geometric mean for rate of growth by multiplying the five numbers 

together and then taking the 5th root (Ѝ    ) of the product. 

Besides the mean, the terms “median” and “mode” also convey something of what we informally 

mean by “average.” The median is the middle most value. If for example, we were considering 

height, for an odd number of students lined up shortest to tallest; the median is simply the height of 

the student in the middle. For an even number of students, the median is the sum of heights of two 

middle most students divided by 2. 

The mode on the other hand is the most frequent or “popular” score. (Think of the Afrikaans word 

for fashion: mode)  If for example, there are three students of 143 cm in height and there is no larger 

group of students who are the same height as each other, then the mode of the heights of all the 

students is simply 143 cm, because that is the most frequent height. 

In the ideal world of symmetrically distributed 

data, the mean, median and mode coincide, i.e. 

they lie one on top of the other when depicted 

graphically. Suppose however that Mr. Ander-

son’s 7th Grade class of 2012 had an unusually 

high number of students on the basketball team, 

say 10 out of a total of 24, then because taller 

students tend to self-select for sports such as 

basketball, the distribution of heights would be 

skewed to the right. In such a distribution the 

mean, median and mode would not coincide but 

be dragged apart. 

Measures of Spread or Dispersion 

Some data are remarkably uniform, such as the mass of electrons, while others, such as the mass of 

humans are remarkably diverse or spread out. Measures of spread or dispersion, then all quantify 

this tendency one way or the other, increasing from 0 for absolute conformity upwards as data 

become more diverse. Fortunately, some measures of spread are simply measured in the same units 

as the data which they describe. For these measures then, if the data are, for example, measured in 

kg then so too will be the units of measure of spread describing the data. For other such measures of 

spread, however it may not make sense to describe them in the same units. (Wikipedia: Statistical 

dispersion) 

Although we learned in high school about range and interquartile range as measures of spread, the 

one measure that some students have difficulty with at tertiary level is standard deviation (and its 

square, variance.) Before we begin though, it is important to decide whether the data before us 

Self-Selection 

In the case of Basketball we are not surprised 

to find tall players over represented, because 

tallness is an advantage in such a game. It is 

not that playing Basketball causes tallness. 

Rather, those who are already unusually tall 

tend to self-select for participation in games 

like basketball, whereas those of a slighter 

build might self-select as gymnasts or jockeys. 

It is important therefore to exclude self-

selection as a confounding factor.   
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represent a population, in which case we use the lower case Greek letter sigma (σ) for population 

standard deviation, or a sample drawn from a population, in which case we just use a regular “s” for 

sample standard deviation. 

Standard deviation is simply a measure of how data deviate from the mean, “on average” so to 

speak. As such, it is measured in the same units as the data it describes. Consider the following 

population of 8 values from the example at “Wikipedia: Standard deviation.” 

 2; 4; 4; 4; 5; 5; 7; 9 

The first step is to calculate the mean for a population (μ). This requires that we add all and then 

divide their sum by their number (n= 8). Thus, 

 μ =   = 5 

Next we must calculate how much each number differs from the mean, then sum those differences 

and divide by the total. But this won’t work because some of the numbers differ from the mean by a 

positive amount, two don’t differ at all, and the rest differ by a negative amount. So some 

differences are going to end up cancelling each other out, which we don’t want. The easiest way out 

is to simply instruct a program, like Excel, to truncate the sign before each difference. The 

mathematical function needed to do this is the absolute value function “Abs ὼ” or “|ὼ|” for short. 

However the absolute vale function doesn’t simply truncate a sign, it performs a two-step 

procedure. First it squares the number, then it delivers the positive square root of the square. Thus: 

ȿὼȿ ὼ 

So we will have to replicate this two-step process with our data, as follows: 

 (2 - 5)2 = (-3)2 = 9 (5 - 5)2 = (0)2 = 0 

 (4 - 5)2 = (-1)2 = 1 (5 - 5)2 = (0)2 = 0 

 (4 - 5)2 = (-1)2 = 1 (7 - 5)2 = (2)2 = 4 

 (4 - 5)2 = (-1)2 = 1 (9 - 5)2 = (4)2 = 16 

Next we calculate the mean of these squared differences and take the positive square root of the 

result. Even a modestly good calculator will be able to do this on one line, like this: 

   = 2 

This number then is the population standard deviation (σ) of our data and is one important measure 

of its spread. In general the formula for the population standard deviation of a finite data set, in 

which each vale has the same probability, is given by: 

„
ρ

ὲ
ὼ ‘  
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where n is the number of our population and μ is the mean as calculated before. Some may find this 

notation daunting but actually it is quite clear. Working from inside, outward, this formula tells us 

that for all the numbers 1 through n, we should subtract that corresponding ὼ from the mean μ and 

square the result. Then we should sum up all n of these results and divide the total by our n. Finally, 

we should take the (positive) square root of this number. This is just what we did in our example, so 

if you understood the example above step-by-step, you already understand the formula. 

It is important to be able to visualise just what information the standard deviations conveys, as in 

the following plot of a normal distribution (or bell curve,) where each coloured band has a width of 1 

standard deviation and with the total area under the graph from -Њ to +Њ  exactly equal to 1. 

 

 

As we can see, about ⅔ of the population falls within 1 standard deviation either side of the mean, 

while about 95% fall within 2 standard deviations and very nearly all but 0,2 % within 3. Because this 

figure is symmetrical and has an area of 1, we can for example figure out the percentage that fall, 

say up to and including 1 standard deviation: 50% left to μ + 34,1% = 84,1% up to 1σ or only the 

lesser portion to the right:  100% - 84,1% = 15,9. This property and such calculations will be very 

useful in the following section. 

Standardising Scores 

Suppose Mike takes a (reliable) test for some sort of aptitude, say lateral thinking. You are informed 

that he scored 114 points with a mean score of μ=100 and a standard deviation of σ=15 points. What 

should you do with such information? What does it mean in this context? What is the probability of 

someone scoring 114 on this test? Is Mike an exceptional lateral thinker? 
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First we must consider the standard normal function on p. 4 with a mean, μ = 0 and standard 

deviation, σ = 1. This is also known as the “z-distribution.” The standard score or z-score is a 

measure of how many standard deviations (positive or negative) a datum or raw score ὼ is above the 

mean. In the graphic below you can see that the various z-scores marked off at the bottom 

correspond to the standard deviations -4σ to +4σ above.

 

The process of converting raw scores to z-scores is known as standardising or normalisation and it 

allows us to compare our data with a standardised scheme for interpreting the distribution of 

probabilities. There are however a number of provisos. Firstly, the population distribution must be 

normal or approximately normal. Secondly, we must know the population parameters μ an σ 

although in practice we almost never do. Nevertheless, supposing we have the requisite population 

parameters, we can convert a raw score, ὼ into z-score as follows: 

ᾀ
ὼ ‘

„
 

This ᾀ (positive or negative) tells us the distance between the raw score, ὼ and the mean, ‘ in units 

of standard deviations, σ. If we substitute the information for Mike’s lateral thinking score, we get: 

 ᾀ  0.93 

which is just less than +1 standard deviation away from the mean.  So clearly Mike’s score lies above 

the mean for lateral thinking, but not quite as exceptionally as he might have hoped. 

That is not to say that +1 or indeed (+2 or -3 etc.) standard deviation are “special” or critical intervals 

above or below which a score is observed to fall. Instead, as continuous curves, we should regard 

whole number standard deviations as statistical landmarks that allow us to estimate (and visualise) 

into what proportion a score falls. See both of the normal curves above. As a rule of thumb however, 

we should be guided by our intended audience. If a particular medical journal reports results as 

percentiles, then such intervals should correspond to our critical values. When we come to the study 

unit concerning hypothesis testing however, we will follow the more familiar scientific convention of 

using critical values corresponding to preselected confidence levels of 66,7%, 95%, 99.9% and so on.  
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Using z-tables 

The area under the z-function to our standardised valve can be calculated and it represents the 

probability of finding such a score in that range. For convenience these calculations are usually 

published at the end of most statistics textbooks or in a separate manual. They are available here 

courtesy of the University of Florida. There are two separate tables on separate pages for converting 

z-scores to probabilities. The first is for negative z-scores that lie to the left of, and including, the 

mean. The second is for positive z-scores that lie to the right of, and including, the mean. 

Once you have selected the appropriate table for the z-score you want to convert, say Mike’s z-score 

of 0.93, run your eye (or finger) down the first column till you come to the row beginning with 0.9. 

Next, run your eye (or finger) across that row until you come to the column for the second digit, in 

this case 0.03. The p-value corresponding to the z-score you are looking up will be found at the 

intersection of the row and column for the first and second digits, respectively. In the case of Mike’s 

z-score this corresponds to a p-value of 0.8238. This means that approximately 82% of the 

population have a score equal to or less than that of Mike’s, i.e. the greater proportion. 

If we want to work out the lesser proportion i.e. those whose scores were better than, or fell to the 

right of Mike’s score, we simply subtract the p-value for the greater proportion from 1 because that 

is the total area under the graph. Thus: 1 - 0.8238 = 0.1762 which is the proportion of the population 

who would score better than or equal to Mike’s score. 

 Examples 

The following two examples are slightly modified from the ones in the study guide for the 

Psychological Research module PCY3704, presented by UNISA. Besides being straightforward, 

questions very much like these have been included in almost every past paper for this module that 

we have consulted, so they are quite likely to come up again, and not just in UNISA Psychology 

exams: 

1. Zola has an I.Q. score of 120 (standardised with mean of 100 and a standard deviation of 15 

on a normal distribution.)  She also scores an 8 on a 9 point test for mathematical aptitude 

(standardised with a mean of 5 and a standard deviation of 1.5 also on a normal 

distribution.) If I.Q were a predictor of mathematical aptitude how would her scores 

compare? 

It is difficult to compare these scores at a glance but transforming them both into z-scores allows us 

to compare them in terms of standard deviations from the mean. For I.Q. our transformation into a 

z-score looks like this: 

 ᾀ  1.33 

while for mathematical aptitude, the transformation is as follows: 

  ᾀ
Ȣ

 2.00 

Therefore Zola’s mathematical aptitude is higher than we wold expect based on her I.Q. alone. 

http://philosophy.org.za/uploads_other/Ztables.pdf
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2. Phoebe, meanwhile scores 56% for an exam in Cognitive Psychology and wants to know 

where she stands in relation to the rest of the class, where the mean score was 52% and the 

standard deviation is 4. How did she fare? 

Strictly speaking we have to treat Phoebe’s class as a population, rather than sample from a larger 

population of students; otherwise we are not entitled to use the z-formula as is. Suppose that we do, 

then we can transform Phoebe’s mark of 56% into a z-score, as follows: 

 ᾀ  1.00 

So Phoebe’s mark is one standard deviation above the mean for her class. If we look up this value on 

the z-table for the greater proportion we find that her score corresponds to a p-value of 0.8413, 

which means that Phoebe fared better on this test than 84% of her classmates. 

Sampling 

When conducting research it is necessary to draw a sample or several samples from a given 

population in the hope that such a sample or samples will be representative of the population. The 

long term goal of such research is to draw inferences, from the results obtained by means of 

sampling, back to the population. If, for example, one obtains permission from number of residents 

in an old age home to check their existing blood samples for calcium levels and one finds that they 

are unusually low, one might make an inference back to the population of elderly residents that they 

require some form of supplementation. 

When drawing samples we try to randomise the 

process as far as possible in the hope that our 

sample will be independent and representative of 

the parent population. Secondly, we try to draw as 

many samples as are practicable and cost effective, 

because smaller samples are less likely to be 

representative than larger samples.  Unfortunately 

there is no way of knowing beforehand which 

sample will be representative and which will not. 

Furthermore any two random samples may look 

quite different because, after all, they are likely to 

consist of different individuals. The upshot of all 

this is that any statistic derived from a sample, such 

as the sample mean, will vary from one sample to 

the next. So what chance do we take that our sample statistics reflect the population parameters?  

Fortunately the rather abstract notion of a sampling distribution of a statistic (such as the mean) 

leads to a very practical estimate of the size of the error we may make in in estimating the mean of a 

population ‘ from the mean of our sample ὼ. If we had unlimited time and resources we could draw 

samples of a given size in every possible way from our population, first this way, then that, then 

every other possible way until we had exhausted all possibilities. If we were to work out a statistic, 

such as the sample mean ὼ for each sample and then plot the distribution of all the possible sample 

Self-Selection - A Related Problem 

The process of sampling is also beset by a 

problem related to that of self-selection. If, 

for example one elderly resident’s calcium 

levels are unusually low, then it is very likely 

that there will be another elderly resident in 

the same sample whose calcium levels are 

also unusually low. Ideally we would like our 

samples to be independent; however in a 

later study unit we will encounter tests such 

as the td test specifically designed to 

accommodate dependent samples.  
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means we would arrive at a sampling distribution of that statistic, which together with our individual 

sample have some useful properties. 

This is a rather counterintuitive way of going about the business of random sampling but it is so 

important that it bares repetition, this time concentrating on the mean. If we were to draw every 

possible sample of a given size from a population and calculate the arithmetic mean ὼ for each 

sample, we would end up with a sampling distribution of the mean. This distribution has its own 

mean Ⱨ● which is identical to the population mean ‘ because it is believed but not yet proven, that 

in a roundabout way, we would have sampled every individual or element in every possible way that 

there is to sample a given number at a time for a population of a certain size. Therefore we have: 

‘ ‘ 

which is an important insight because this states that: the mean of the sampling distribution of the 

mean is the same as the parameter of the population mean. That we would have to go to such 

unusual and impossibly protracted lengths to obtain it is all par for the course is mathematics. 

Nobody balks at infinite sums or series or infinitesimal volumes, at least, not any more. Strangeness 

is no enemy of logic. 

The Central Limit Theorem (CLT)2 

The CLT is a mathematical theorem that is fundamental to our understanding of much of what 

remains to be explained in this study unit and beyond. Indeed, it is so important that it is hard to 

imagine the subject of Statistics without it. It states: 

Given a population with a finite mean μ and a finite, non-zero standard deviation σ, the 

sampling distribution of the mean (made using samples that were independently selected 

from the population,) approaches a normal distribution with a mean of μ and a standard 

deviation of σ/ЍÎ as the sample size, Î, increases. 

It is not necessary that you be able to prove the central limit theorem (CLT) or even describe it in 

every detail, only that you know what it states, in outline, and what it entails for our purposes, 

namely that: 

¶ Regardless of the shape, mean or standard deviation of the parent population, the 

distribution of the sampling means approaches a normal distribution as n increases. (In fact, 

it approaches very close to normal with an n of as low as 30.) 

¶ The distribution of the sample means is described by the mean (‘ ‘) and its standard 

deviation is given by σ/ЍÎ. 

 

While this quantity σ/ЍÎ is literally the standard deviation of the sampling means it is better known 

as the standard error because it is an estimate of the size of the error we shall make if we use the 

mean of the sampling means ‘ as an estimate of the population mean ‘. Because the standard 

error is so frequently used in statistics and in scientific reports it has its own symbol: „  The σ 

indicates that we are dealing with a population parameter rather than a sample statistic. The little x 

                                                           
2
 This section is particularly well explained for the non-specialist by UNISA’s Professors Kruger & Janeke (2012.) 

We have been guided by their example. 
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bar subscript, ὼ meanwhile, signifies that we are referring to a population of sample means as 

opposed to sigma, „ without a subscript which refers to the standard deviation of the population. 

Thus: 

 

„
„

Ѝὲ
 

According to this formula one should be able to diminish the standard error by reducing σ and 

increasing n, however because the standard deviation, σ is a population parameter we seldom have 

control or even knowledge of the parameters of large populations, unless like I.Q. we rig them that 

way. What we do have control of is the number, n that we include in our samples, however because 

the formula takes the square root square root of the number, we have to include 4x as many 

number in our sample just to mitigate the standard error by half. However see the second bullet 

above. Also  it is not necessary or practicable to take ever larger and larger samples when a) we do 

not need to have confidence in some finding beyond a certain level of significance and b) we could 

be could be sampling “smarter” rather than just more numerously. (See Study Unit on Hypothesis 

Testing) 

For now let us revise graphically what we have tried to explain verbally. Professors Kruger & Janeke 

of UNISA have included the following diagram in their study guide for the 3rd level, undergraduate 

course in “Psychological Research”, presented by the Department of Psychology.  

 

“Samples and sample means in relation to a population” ©UNISA 2012 

The relatively large set of figures in the upper oval represents the parent population. This population 

is described by its parameters, the mean μ and standard deviation σ, right of curly bracket. The 

smaller ovals below represent, only a fraction of, all the repeated samples to be drawn from parent 

population, five at a time (n=5). Note that not every sample has the same sample mean, ὼ but if we 

were to take the mean of all the sample means, ‘  it would be numerically equal to the population 

mean, μ. Furthermore the standard deviation of all the sampling means, „  would be given by the 
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quantity σ/ЍÎ , according to the Central Limit Theorem. This then is what is otherwise known as 

standard error. See right of the curly bracket, bottom of the diagram. 

Examples 

The following example, which requires knowledge of both the z-distribution and the CLT, is selected 

form Stefan Waner and Steven R. Costenoble’s (1998) Sampling Distributions & The Central Limit 

Theorem Miscellaneous on-line topics for Finite Mathematics. (Available here) 

3. A lightbulb manufacturer claims that the lifespan of its lightbulbs has a mean of 54 months 

and a standard deviation of 6 months. Your consumer advocacy group tests 50 of them. 

Assuming the manufacturer’s claims are true, what is the probability that it finds a mean 

lifetime of less than 52 months? 

Solution: The quantity we seek is the probability that the mean lifetime, ὼ of bulbs manufactured by 

this company is 52 months or less. In symbols p(ὼ ≤ 52). According to the CLT, ὼ will have an 

approximately normal distribution with a mean of μ = 54 months and standard error of: 

 „
Ѝ

 0.85 months 

To find the probability, we have to convert these values into z-scores. Therefore we let: 

  ᾀ  
Ȣ

 2.35 

Now since this is the lesser proportion, we consult the first z-table to find the corresponding p-value, 

which is: 

 p = 0.0094 

So the probability of this happening is 0.0094 or 0.94%. Alternatively, we can be 100% - 0.94% = 

99.06% certain that this won’t happen (if the manufacturer’s claim is true!) 

This last example is purely imaginary, but it emphasises another point or two so please take a look: 

4. Suppose Mr. Anderson’s school give you consent (in the interests of research) to examine 

the permanent records of some of his Grade 7 students. You take a sample of 16 cards from 

among 25 of his students.  You are surprised to discover that the mean I.Q. of these students 

is exactly 110 points. Given that I.Q. tests are so designed as to produce a mean test score of 

100 and a standard deviation of 15 points, what is the probability of the sample of Mr. 

Anderson’s students scoring better than the mean score that they did? Put your result into 

perspective. Do you suppose it was a matter of chance? 

Solution: The quantity that we seek is p(ὼ > 110). However, this time we do not, indeed must not, 

use the standard error when we already know the population mean μ=100 and standard deviation 

σ=15. What we still need to do is to convert our raw score into a ᾀ-value, therefore: 

  ᾀ  0.67 

http://www.zweigmedia.com/RealWorld/finitetopic1/sampldistr.html
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Since this represents the larger portion, we must consult the second z-table here to find the 

corresponding p-value, which is: 

 p = 0.7486 

But this is the probability that people’s I.Q. 

scores will fall within the interval up to and 

including 110. What we were asked is the 

probability of the sample having a mean score 

better than 110. Therefore we have to look at 

the area under the curve to the right of the ᾀ-

score of 0.67. The easiest way to calculate this 

is to simply subtract our p-value from 1, 

because remember, the entire area under the 

normal distribution is 1. And so: 

 1 - 0.7486 = 0.2514 

which is the probability of the mean of a sample of students scoring above 110 I.Q. points. 

This is modestly improbable, because after all, a score of 110 I.Q. points is already above “average” 

but not above one standard deviation to the right of 115 points. Just being in school puts one at a 

distinct advantage in the way intelligence tests are structured.  Moreover schools actively recruit 

candidates with higher intelligence based on performance, though in the public system, they are not 

permitted to turn a student away based solely on their I.Q. Therefore the mean value of 110 points 

obtained is probably not due to chance (alone).  

Conclusion 

Although the point of the above examples is to demonstrate how distributions can be standardised 

as well as the consequences of the CLT, you will not be required to do such calculations in 

undergraduate Social Science and Humanities examination (apart from the odd conversion to a z-

score or the halving or doubling of a p-value. Means and standard deviations will usually be supplied 

because they are time consuming to calculate.) What you will be asked in most Research 

Methodology modules is what given results mean in real terms, what confidence you should ascribe 

to them and how they are derived. 

A key skill in this area is learning how to read, and judge the merit of a scientific article. What 

statistical evidence is being presented? What does it mean? How does it support the conclusion? 

And are the appropriate tests being used? Although we have only met one such test so far, there are 

several more to follow. 

Finally, most Social Science and Humanities programs will require you to carry out some project 

towards your major that involves the collection, assimilation and interpretation of data, such as 

responses to questionnaires or basic anthropometry. This is where statistical skills are paramount. It 

is one thing to enter your data into a spreadsheet program. It is quite another to know what 

functions to select and what the output actually means and how you should include it in your project 

report or “mini-thesis.” 

A rough sketch of the quantities involved is often 

helpful to visualise the problem. 

http://philosophy.org.za/uploads_other/Ztables.pdf
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Task 

By way of revision, it is useful to make sure you understood the meaning of the following table of 

quantities used in this study unit. One is included that you may have to look up. Why are some 

written with Greek letters while others are written using the Roman alphabet? Why do some have 

subscripts (or superscripts,) while others don’t? In which case, what do such scripts denote? 

 μ ‘ ὼ 

 σ „  s 

 σ2 „  s2 

 ᾀ ὴ n 

Feedback 

The quantities written in Greek letters refer to population parameters that represent some feature 

of a population such as its mean (μ) or standard deviation (σ). Mostly such quantities are unknown 

to us but can be estimated. Quantities written using the Roman alphabet refer to statistics which are 

measurable features of finite samples such as the mean (ὼ) or standard deviation (s). We have not 

explicitly defined variance σ2 and s2 because it is simply the square of the standard deviation, or the 

value displayed on your calculator just before you hit the final square root button when calculating 

standard deviation. Several mathematical theorems are stated in terms of variance rather than 

standard deviation, therefore we have retained the notation. 

The variables:  ‘ , „  and „  are derived by sampling a population in the peculiar fashion 

described above; counting every possible way of sampling a population so many (n) at a time. 

Therefore, because entire population is sampled they are regarded as parameters, however the ὼ 

bar subscripts (ὼ) indicate that they are, never the less, samples. ‘ represents the sampling mean; 

„  the standard error of the sampling mean or standard error, whereas „  is simply the square of 

this quantity, though we shall not be concerned with it here. 

ᾀ is a score (positive or negative) measured in standard deviations, that a raw score is above the 

mean of a normal distribution. ὴ meanwhile is just a probability, expressed as a decimal between 0 

for impossible to 1 for certainty. Each ᾀ-score is associated with a particular probability that has 

been calculated for us in the appendix of this study unit. On the other hand, not every ὴ-value is 

associated with a ᾀ-score. We saw several examples of this in Critical Reasoning 10. Finally, n of 

course is just the number of a population or the number drawn as a sample. Since we are unlikely 

ever to be unclear about which, we don’t have to bother with a separate nu (ν) and n. 

If you were unable to identify one or more of the variables above, please do not rely solely on the 

information above. Rather, go back into the text and find the definition in the context of the 

surrounding text. 

The next Critical Reasoning Study Unit will cover the logic of relations. 
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